Histology, Alveolar Macrophages

Article Author:
Ahmed Naeem
Sachchida Rai

Article Editor:
Louisdon Pierre

Editors In Chief:
Linda Lindsay

Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi

7/5/2019 9:49:32 PM


Alveolar macrophages (AM) also known as dust cells are a type of white blood cells. The immune system is divided into the cellular and humoral components. Alveolar macrophages are the first line of defense against invading respiratory pathogens. They reside in pulmonary alveoli and the inter-alveolar septum in close proximity with pneumocytes. The alveoli are the terminal unit of the respiratory system responsible for gaseous exchange. The alveoli are comprised of three different kinds of cells: (1) Type I pneumocytes, build up the structure of the alveolar wall and aid in respiration. They do not replicate. (2) Type II pneumocytes secrete a lipoprotein called surfactant that prevents the collapse of the alveoli even after exhalation. (3) Alveolar macrophages produce a variety of signaling chemicals that interact with other cells of the immune system to orchestrate a response that maintains immunologic and tissue homeostasis in the body [1]. Type II pneumocytes replete both types of pneumocytes and AMs which in turn are vital to host defenses and tissue remodeling [2]


All cell types of the mononuclear phagocyte system originate from the hematopoietic stem cells produced in bone marrow from the common myeloid progenitor. These myeloid cells further differentiate into myeloblasts that give rise to monocytes. Monocytes travel in the bloodstream and get matured in the connective tissue of the organ to form macrophages [3]. Alveolar macrophages also can be present in the tissue from birth, independent of monocytes. Monocytes have a half-life of a day, whereas macrophages can live up to months or years in the tissue [4]. The size or shape of alveolar macrophages can vary among different individuals depending on the phagocytic function and the living environment of the cell in the body. The cell membrane of alveolar macrophages can change its shape during mobilization or phagocytosis by the activation of the microtubule network. The movement of alveolar macrophages to the site of tissue injury in response to certain chemicals is known as chemotaxis [5]. Alveolar macrophages have a very distinct actin microfilament structure that aids in chemotaxis and endocytosis [6].


Alveolar macrophages play an important role in scavenging microbes such as viruses, bacteria, fungi, inhaled environmental particles like coal, silica, asbestos, tissue debris, and cancer cells. Alveolar macrophages get activated by the interaction of toll-like receptors (TLR) present on the AM surface with the pathogen-associated molecular receptors (PAMP) present on the microbial cell. The interplay between TLRs and PAMPs transmits chemical signals that trigger the process of pathogen engulfment and the secretion of pro-inflammatory cytokines that enhance local immune response [7][8][7]. After phagocytosis, phagosomes are fused with lysosomes to form phagolysosomes and production of digestive enzymes that kill the pathogen. Certain bacteria such as Mycobacterium Tuberculosis can resist phagocytosis [9]. In such case, alveolar macrophages contain the infection from spreading to the other organs. Specific environmental particles like carbon and silica can be engulfed by macrophages in an attempt to keep them out of the bloodstream. During an active inflammatory reaction, certain pro-inflammatory cytokines play an important part in tissue repair and fibrosis.

Tissue Preparation

Resting macrophages are difficult to stain on hematoxylin and eosin (H&E) preparations [10]. One way for a practitioner to visualize them is to inject an experimental animal with very fine carbon particles. The engulfed carbon particles become visible as a dark, black-brown accumulation in the cytoplasm of the alveolar macrophages [10]. However, according to some studies, alveolar macrophages are more easily identifiable in pulmonary tissue sections than macrophages in other tissues of the body.

Histochemistry and Cytochemistry

Cells are differentiated from the surrounding tissue by using a cluster of differentiation (CD) markers or the cell's surface molecules. There is no specific CD marker for alveolar macrophages. The cell recognition depends on the tissue in which macrophages need to be detected, and the antibody can be tailored accordingly. CD11b and CD68 are associated with macrophages in the literature [11][12]. In one study, there is an increasing percentage of CD63, CD204, or CD206 positive cells found in the lungs of patients with chronic obstructive pulmonary disease (COPD) compared to those in nonsmokers and smokers [13].

Microscopy Light

In a healthy lung, there are at least two types of macrophages: alveolar macrophages (AM) and interstitial macrophages (IM) [14]. They are functionally different and can be distinguished by localization within the lung and expression of CD11b and CD11c. After exposure to a pathogen, polarized alveolar macrophages are divided into M1 cells and M2 cells [4]. M1 cells produce pro-inflammatory mediators like TNF-alpha and IL-1beta. M2 cells further differentiate and dominantly produce allergic cytokines IL-4 and IL-13; these are involved in the pathological mechanism of asthma [4]. One study established the role of IL-17 in allergic asthma. IL-17 is produced by alveolar macrophages and causes airway remodeling in patients with asthma [15].

Microscopy Electron

Under the electron microscope, alveolar macrophages contain all the vital cell organelles like variable shape nucleus with nucleoli, ribosomes, Golgi bodies, mitochondria, and most importantly, the lysosomes. Lysosomes contain digestive enzymes that help breakdown engulfed material.


Alveolar macrophages play an important role in infections such as tuberculosis (TB). Mycobacterium tuberculosis’ bacteria evolved mechanisms that resist phagocytosis of macrophages. Alveolar macrophages gather around the M. Tuberculosis and join to form a multinucleated giant cell (also known as Langerhans giant cell), surrounded by T-cells. TNF-alpha and IFN- gamma are particularly important in the formation of granuloma [16][17]. TB is one of leading cause of mortality and morbidity in patients with HIV, especially in underdeveloped countries where HART is not widely available. The hallmark finding of non-caseating granulomas in some of the systemic diseases such as sarcoidosis form by joining alveolar macrophages in an attempt to wall-off the infectious process. Alveolar macrophages also secrete vitamin D and cause hypercalcemia in sarcoidosis, one of the clinical criteria that help in diagnosis [18][19].  

Alveolar macrophages also engulf harmful environmental particles such as carbon, specifically reported in coal mine workers and termed as pneumoconiosis. Similarly, crystalline silica particles can deactivate alveolar macrophages immunologic response, mimicking TB. For this reason, patients with a history of silica exposure should have periodic TB testing.

Clinical Significance

Alveolar macrophages also are found in higher numbers higher in the bronchoalveolar lavage (BAL) collected from the lungs of patients who smoke and those with COPD. The macrophage count obtained by lavage is found to be four to six times greater in smokers than nonsmokers. Apart from this, alveolar macrophages are morphologically different and contain a higher amount of harmful pigment and free radicals in smokers than in non-smokers.[13][20]. Emphysema is a chronic lung disease caused by the destruction of terminal airways by elastases, secreted by neutrophils. Interestingly, alveolar macrophages secrete elastases too, therefore elastases also are high in the lavage of smokers.[21][22] In that aspect, the role of alveolar macrophages in emphysema can give more insight into the disease process and a new avenue for research.

Alveolar macrophages are involved in interstitial pulmonary fibrosis (IPF), a condition in which lung tissue is replaced by fibrotic tissue. Fibroblasts are absent in healthy lung tissue but have been found in the BAL fluid of the IPF.

In some studies, fibroblasts are considered a subset of alveolar macrophages as they express the same monocyte surface markers such as CD11b and CD14. Surfactants are phospholipids produced by pneumocytes that prevent the collapse of alveolar walls during expiration. Another function of alveolar macrophages is to remove excess surfactant and thus maintain homeostasis. Alveolar macrophages require stimulation from a signaling molecule known as granulocyte/macrophage-colony stimulating factor (GM-CSF) to clear excess surfactant. Pulmonary alveolar proteinosis (PAP) is a spectrum of autoimmune diseases in which antibodies are formed against GM-CSF, halting the function of alveolar macrophages thus building up excess surfactant. A hereditary form of PAP is a rare condition that presents in children between the ages of one and 10 years, resulting from the mutation of GM-CSF receptors on alveolar macrophages [23]. In short, alveolar macrophages play an important role in the body's defense against pathogens, foreign bodies, walling-off infections, and repair.  

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Histology, Alveolar Macrophages - Questions

Take a quiz of the questions on this article.

Take Quiz
Most of the cells found in the alveoli in desquamative interstitial pneumonia are:

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up

Histology, Alveolar Macrophages - References


Lambrecht BN, Alveolar macrophage in the driver's seat. Immunity. 2006 Apr;     [PubMed]
Guth AM,Janssen WJ,Bosio CM,Crouch EC,Henson PM,Dow SW, Lung environment determines unique phenotype of alveolar macrophages. American journal of physiology. Lung cellular and molecular physiology. 2009 Jun;     [PubMed]
Orkin SH, Diversification of haematopoietic stem cells to specific lineages. Nature reviews. Genetics. 2000 Oct;     [PubMed]
Martinez FO,Gordon S, The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime reports. 2014;     [PubMed]
Mantovani A,Sozzani S,Locati M,Allavena P,Sica A, Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in immunology. 2002 Nov;     [PubMed]
Hance KA,Tataria M,Ziporin SJ,Lee JK,Thompson RW, Monocyte chemotactic activity in human abdominal aortic aneurysms: role of elastin degradation peptides and the 67-kD cell surface elastin receptor. Journal of vascular surgery. 2002 Feb;     [PubMed]
Chalifour A,Jeannin P,Gauchat JF,Blaecke A,Malissard M,N'Guyen T,Thieblemont N,Delneste Y, Direct bacterial protein PAMP recognition by human NK cells involves TLRs and triggers alpha-defensin production. Blood. 2004 Sep 15;     [PubMed]
Gulati A,Kaur D,Krishna Prasad GVR,Mukhopadhaya A, PRR Function of Innate Immune Receptors in Recognition of Bacteria or Bacterial Ligands. Advances in experimental medicine and biology. 2018;     [PubMed]
Haque MF,Boonhok R,Prammananan T,Chaiprasert A,Utaisincharoen P,Sattabongkot J,Palittapongarnpim P,Ponpuak M, Resistance to cellular autophagy by Mycobacterium tuberculosis Beijing strains. Innate immunity. 2015 Oct;     [PubMed]
Soufleris AJ,Pretlow TP,Bartolucci AA,Pitts AM,MacFadyen AJ,Boohaker EA,Pretlow TG 2nd, Cytologic characterization of pulmonary alveolar macrophages by enzyme histochemistry in plastic. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society. 1983 Dec;     [PubMed]
Inoue T,Plieth D,Venkov CD,Xu C,Neilson EG, Antibodies against macrophages that overlap in specificity with fibroblasts. Kidney international. 2005 Jun;     [PubMed]
Le Hir M,Kaissling B, Antibodies against macrophages that overlap in specificity with fibroblasts. Kidney international. 2005 Nov;     [PubMed]
Kunz LI,Lapperre TS,Snoeck-Stroband JB,Budulac SE,Timens W,van Wijngaarden S,Schrumpf JA,Rabe KF,Postma DS,Sterk PJ,Hiemstra PS, Smoking status and anti-inflammatory macrophages in bronchoalveolar lavage and induced sputum in COPD. Respiratory research. 2011 Mar 22;     [PubMed]
Umemura N,Saio M,Suwa T,Kitoh Y,Bai J,Nonaka K,Ouyang GF,Okada M,Balazs M,Adany R,Shibata T,Takami T, Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. Journal of leukocyte biology. 2008 May;     [PubMed]
Peebles RS Jr,Aronica MA, Proinflammatory Pathways in the Pathogenesis of Asthma. Clinics in chest medicine. 2019 Mar;     [PubMed]
Ufimtseva E,Eremeeva N,Bayborodin S,Umpeleva T,Vakhrusheva D,Skornyakov S, Mycobacterium tuberculosis with different virulence reside within intact phagosomes and inhibit phagolysosomal biogenesis in alveolar macrophages of patients with pulmonary tuberculosis. Tuberculosis (Edinburgh, Scotland). 2019 Jan;     [PubMed]
Gutierrez MG,Master SS,Singh SB,Taylor GA,Colombo MI,Deretic V, Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 2004 Dec 17;     [PubMed]
Mohan A,Malur A,McPeek M,Barna BP,Schnapp LM,Thomassen MJ,Gharib SA, Transcriptional survey of alveolar macrophages in a murine model of chronic granulomatous inflammation reveals common themes with human sarcoidosis. American journal of physiology. Lung cellular and molecular physiology. 2018 Apr 1;     [PubMed]
Mortaz E,Masjedi MR,Abedini A,Matroodi S,Kiani A,Soroush D,Adcock IM, Common features of tuberculosis and sarcoidosis. International journal of mycobacteriology. 2016 Dec;     [PubMed]
Koyama S,Sato E,Haniuda M,Numanami H,Nagai S,Izumi T, Decreased level of vascular endothelial growth factor in bronchoalveolar lavage fluid of normal smokers and patients with pulmonary fibrosis. American journal of respiratory and critical care medicine. 2002 Aug 1;     [PubMed]
Lee KH,Jeong J,Koo YJ,Jang AH,Lee CH,Yoo CG, Exogenous neutrophil elastase enters bronchial epithelial cells and suppresses cigarette smoke extract-induced heme oxygenase-1 by cleaving sirtuin 1. The Journal of biological chemistry. 2017 Jul 14;     [PubMed]
Lee KH,Lee J,Jeong J,Woo J,Lee CH,Yoo CG, Cigarette smoke extract enhances neutrophil elastase-induced IL-8 production via proteinase-activated receptor-2 upregulation in human bronchial epithelial cells. Experimental     [PubMed]
Mlika M,Kaul P, Alveolar Proteinosis 2018 Jan;     [PubMed]


The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of NP-Advanced Physiology. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for NP-Advanced Physiology, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in NP-Advanced Physiology, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of NP-Advanced Physiology. When it is time for the NP-Advanced Physiology board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study NP-Advanced Physiology.