Anatomy, Shoulder and Upper Limb, Acromioclavicular Joint


Article Author:
Michael Wong


Article Editor:
John Kiel



Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Kyle Blair
Trevor Nezwek
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Abbey Smiley
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Daniyal Ameen
Altif Muneeb
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes
Komal Shaheen
Sandeep Sekhon


Updated:
12/16/2018 9:29:05 AM

Introduction

The acromioclavicular (AC) joint articulates the lateral end of the clavicle with the acromion as it projects anteriorly off the scapula. The AC joint provides stability and motion to the shoulder complex. It is a commonly injured shoulder joint, ranging from sprains to frank tears, occasionally requiring surgery.[1][2]

Structure and Function

The acromioclavicular joint is a diarthrodial joint defined by the lateral clavicle articulating with the acromion process as it projects anteriorly off the scapula. The AC joint is a plane type synovial joint, which under normal physiological conditions allows only gliding movement. As it attaches the scapula to the thorax, it allows an additional range of motion to the scapula and assists in arm movement such as shoulder abduction and flexion. It also enables the transmission of forces from the upper arm to the rest of the skeleton.

The AC joint is surrounded by a capsule and lined by a synovial membrane. In between the osseous portions lies an intra-articular cartilaginous disk. Lastly, the articulating surfaces are lined with fibrocartilage, as opposed to hyaline cartilage.

Three main ligaments stabilize the joint. The acromioclavicular ligament (AC) has both superior, inferior, anterior, and posterior components. The superior and posterior ligaments are the strongest, and it mainly serves to provide horizontal stability. The coracoclavicular ligaments (CC) complex consists of the conoid and trapezoid ligaments. They insert on the posteromedial and anterolateral region of the undersurface of the distal clavicle, respectively. It mainly serves to provide vertical stability. The coracoacromial ligament is a strong triangular band that connects the coracoid process to the acromion and also provides vertical stability.[3][4][5]

Blood Supply and Lymphatics

Branches from the suprascapular artery, which originates from the subclavian artery, and thoracoacromial arteries, which originates from the axillary artery, form the 2 main blood vessels that provide vascular supply to the acromioclavicular joint.

Nerves

The AC joint is innervated by articular branches of the suprascapular, axillary, and lateral pectoral nerves. These nerves arise from the brachial plexus. Cutaneous innervation to the AC joint is through the sensory branch of the suprascapular nerve. This branch runs superiorly to the supraspinatus muscle towards the AC joint. However, pain arising from the AC joint may be referred to the neck, trapezius, lateral deltoids, and shoulder.

Clinical Significance

Injuries to the AC joint are common. They can present as sprains or dislocations. However, sprains are more common. The most common etiology is direct trauma to the AC joint or lateral trauma providing an axial load on the joint space. This can occur from motor vehicle accidents, sports or accidental trauma. Falling on the outstretched hand or elbow can also cause AC joint injuries. AC joint injuries account for over 40% of all shoulder injuries. Note that AC dislocations are different from “shoulder dislocation,” which refers to the dislocation of the glenohumeral joint.[6]

Patients will generally present reporting pain over the acromioclavicular joint and a mechanism consistent with that injury. They will describe pain over the joint, possibly radiating to the shoulder or neck and made worse with movement or use of the arm. On exam, the provider may observe swelling, bruising, or deformity. There may be tenderness to palpation over the area. There may be limited active or passive range of motion of the shoulder or neck. The examiner should assess for anterior-posterior or superior-inferior mobility and laxity. In dislocations, the deformities may be obvious. It is important to evaluate the entire clavicle and shoulder for additional injuries in addition to performing a full neurovascular examination.

A special test may assist in the evaluation of a suspected AC joint injury. Pain with any of these test may suggest AC pathology. The adduction or cross-arm test has the patient either actively or passively adduct their arm across the body in the axial plane. Pain at the AC joint is a positive test, and it has the greatest sensitivity for AC joint pathology. In performing the shear test, the examiner applies an external force to the AC joint by simultaneously pushing the scapula from a posterior direction and the clavicle from an anterior direction. In the one-handed shear test, also known as Paxinos test, the examiners place their thumb on the posterior acromion and fingers on the mid-clavicle. The examiner then tries to squeeze the thumb and fingers together.

Radiographic evaluation of the acromioclavicular joint is standard for suspected AC-joint injury or undifferentiated shoulder pain in the setting of trauma. Standard AP, lateral, and axillary radiographs should be obtained. If the diagnosis is uncertain, the Zanca view is the most accurate view for examining the AC joint. This is an antero-posterior view with the beam directed at the AC joint with 10 degrees of cephalic tilt. In grade 1 AC joint sprain, which is most common, radiographs will be normal. Disruption of the joint will be seen in grade 2 through 6.  If there is continued uncertainty, ultrasound or MRI may be utilized to provide additional diagnostic information.

Dislocations are staged according to the Rockwood classification of acromioclavicular and coracoclavicular joint injuries.

  • I: AC ligament sprain; CC ligament intact; no radiographic abnormalities
  • II: AC ligament is torn; CC ligament sprain; clavicle elevated but not superior to the border of the acromion, or there is a less than 25% increase in the CC interspace
  • III: AC and CC ligaments are torn; clavicle is elevated above the border of the acromion, or there is a 25% to 100% increase in the CC interspace
  • IV: AC and CC ligaments are torn; posterior displacement of the distal clavicle into the trapezius
  • V: AC and CC ligaments are torn; superior displacement of the distal clavicle by more than 25 mm
  • VI: AC and CC ligaments are torn; inferolateral displacement in a subacromial or subcoracoid displacement behind the coracobrachialis or biceps tendon

The prognosis of acromioclavicular joints dislocations is generally favorable. Grade I and II sprains are self-limited and are managed with conservative therapy including a brief period of rest, sling, ice, anti-inflammatory medications, physical therapy, and a graded return to activity. Treatment for grade III dislocations is controversial and is determined based on the occupation of the patient, their goals, and the consulting orthopedic surgeon. Grade IV to VI are rare, but require surgical correction due to the risk of comorbid injuries. Surgically managed injuries have a longer recovery and higher risk of complications.

The most common complications from acromioclavicular joint injuries is residual pain, affecting 30% to 50% of individuals. Primary or secondary osteoarthritis are commonly seen in the acromioclavicular joint. Incidence of AC joint osteoarthritis increases with age.  It can be through overuse, chronic degeneration, or through prior trauma (secondary osteoarthritis). This leads to narrowing of the articular disc and degeneration of the cartilage. Osteoarthritis may lead to osteophytic lesions and subacromial impingement and compression of nearby structures.[7][8]


  • Image 6376 Not availableImage 6376 Not available
    Contributed by Gray, Henry. Anatomy of the Human Body. Philadelphia and New York: Lea and Febiger. 1918
Attributed To: Contributed by Gray, Henry. Anatomy of the Human Body. Philadelphia and New York: Lea and Febiger. 1918

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Anatomy, Shoulder and Upper Limb, Acromioclavicular Joint - Questions

Take a quiz of the questions on this article.

Take Quiz
What type of synovial joint is the acromioclavicular joint?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following ligaments does not aid in stabilizing the acromioclavicular joint?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 17-year-old male presents to the clinic complaining of shoulder pain after tripping and falling onto his outstretched hand. Which of the following physical exam maneuvers has the greatest sensitivity for identifying acromioclavicular joint pathology?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 17-year-old female presents to the emergency department after a motor vehicle accident, in which she was ejected from the vehicle. She complains of severe shoulder pain located diffusely along the superior aspect of her shoulder. On physical examination of the shoulder, there is scattered ecchymoses with notable superior displacement of the distal clavicle by 3 cm. There is pain to palpation along the clavicle, which does not articulate with the acromion. According to the Rockwood classification of acromioclavicular dislocations, what type is this dislocation?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
The acromioclavicular (AC) joint receives innervation from multiple articular nerve branches. Which of the following nerves does not contribute to the nervous supply of the AC joint?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Anatomy, Shoulder and Upper Limb, Acromioclavicular Joint - References

References

Hyland S,Varacallo M, Anatomy, Shoulder and Upper Limb, Clavicle null. 2018 Jan     [PubMed]
Nakazawa M,Nimura A,Mochizuki T,Koizumi M,Sato T,Akita K, The Orientation and Variation of the Acromioclavicular Ligament: An Anatomic Study. The American journal of sports medicine. 2016 Oct     [PubMed]
Gottschalk HP,Browne RH,Starr AJ, Shoulder girdle: patterns of trauma and associated injuries. Journal of orthopaedic trauma. 2011 May     [PubMed]
Marsalli M,Moran N,Laso JI, Arthroscopic Acromioclavicular Joint Reconstruction With TightRope and FiberTape Loop. Arthroscopy techniques. 2018 Nov     [PubMed]
Lee SJ,Yoo YS,Kim YS,Jang SW,Kim J,Kim SJ,Kim BS,Jung KH,Varshney A, Arthroscopic Coracoclavicular Fixation Using Multiple Low-Profile Devices in Acute Acromioclavicular Joint Dislocation. Arthroscopy : the journal of arthroscopic     [PubMed]
Wurm M,Beirer M,Biberthaler P,Kirchhoff C, [Clavicular fractures : Diagnostics, management and treatment]. Der Unfallchirurg. 2018 Dec     [PubMed]
Doyscher R,Kraus K,Finke B,Scheibel M, [Acute and overuse injuries of the shoulder in sports]. Der Orthopade. 2014 Mar     [PubMed]
Amirtharaj MJ,Wang D,McGraw MH,Camp CL,Degen RA,Dines DM,Dines JS, Trends in the Surgical Management of Acromioclavicular Joint Arthritis Among Board-Eligible US Orthopaedic Surgeons. Arthroscopy : the journal of arthroscopic     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of your specialty. When it is time for the board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study.