Anatomy, Back, Spinal Nerve-Muscle Innervation


Article Author:
Hajira Basit
Benjamin Eovaldi


Article Editor:
Matthew Varacallo


Editors In Chief:
Rhonda Coffman
Lindsay Iverson
Heather Templin


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
5/19/2019 11:12:37 PM

Introduction

The relevant anatomy of the spinal nerve-muscular innervation of the back is centered around the lumbar spinal nerves, peripheral nerves of the lumbar plexus, spinal cord, and lumbar vertebral column. Within the lumbar region, the vertebral bodies are larger than in the thoracic and cervical regions due to the lumbar spine being designed for weight bearing purposes. In general, the spinal cord consists of gray and white matter. As in the brain, the gray matter of the spinal cord contains the cell bodies; and the white matter of the spinal cord contains myelinated tracts. The gray matter of the spinal cord is found the central aspect of the spinal cord in the shape of the letter H. Immediately surrounding the spinal cord is the pia mater, with the subarachnoid space overlying the pia mater, the arachnoid mater overlying the subarachnoid space, and dura mater at the outermost layer, adherent to the spinal column.[1][2]

Cerebral spinal fluid (CSF) is present in the central canal of the spinal cord in the center of the gray matter. Cerebral spinal fluid is also present surrounding the spinal cord, in the subarachnoid space and surrounding the spinal nerves. There are five lumbar vertebral bodies, five lumbar spinal nerves, and five lumbar spinal segments. The adult spinal cord terminates at the L1 or L2 vertebral level. The terminal aspect of the spinal cord is the conus medullaris, and immediately inferior to the spinal cord is the cauda equina. The cauda equina is a cordlike structure composed of thickened and elongated nerve roots which occupy the spinal canal. The cauda equina attaches to the mid-sacral canal at approximately the level of S2. Spinal nerves exit the spinal cord via the intervertebral foramen bilaterally at the lateral aspects of the vertebral column. Spinal nerves secure in place by thickenings in the pia mater, forming thin ligaments called denticulate ligaments. Denticulate ligaments attach to the arachnoid and dura mater stabilizing the position of each spinal nerve roots within the vertebral column.[1][2]

Structure and Function

Each segment of the spinal cord generates a bilateral pair of corresponding spinal nerve roots. Each spinal cord segment corresponds to the same numbered vertebral level in the thoracic, lumbar, and sacral spinal regions. In the cervical spine, there are eight cervical spinal segments and seven vertebral bodies. The primary components of the lumbar nervous system are the: lumbar spinal segments, spinal rootlets, spinal roots, and spinal nerves.

The central canal of the spinal cord supplies the spinal cord and spinal nerves with CSF and is contiguous with the ventricular system of the brain where the CSF is produced. At the posterior aspect of the gray matter of the spinal cord is the posterior horn. Components of the peripherally located white matter of the spinal cord are the posterior funiculus, lateral funiculus, anterior funiculus, and anterior commissure (which crosses the midline anteriorly). At the anterior aspect of the gray matter of the spinal cord is the anterior horn.  At the central aspect of the gray matter is the gray commissure (which crosses the midline).  The transition from spinal roots to spinal nerves is at the level of the pedicle of the vertebral column. The posterior (dorsal) spinal roots enter the spinal column and form posterior root ganglions after separating from the motor fibers of the mixed spinal nerve. From distal to proximal: after the posterior root ganglion is the posterior spinal root and then the posterior rootlets which enter the spinal cord at the posterior horn. The anterior (ventral) spinal rootlets exit the spinal cord from the anterior horn and then form the anterior spinal nerves. The anterior spinal nerves then combine with the posterior spinal roots (distal to the posterior root ganglion) to form mixed spinal nerves. The posterior spinal roots carry afferent (towards the spinal cord) sensory fibers, and the anterior spinal roots carry efferent (away from the spinal cord) motor fibers. Mixed spinal nerves are always a combination of sensory and motor nerves.[2]

Anterior spinal nerves carry motor fibers that affect motor nerves at the motor endplates of muscles. The lumbosacral enlargement is from T11 through S1 of the spinal cord. The lumbosacral enlargement gives off anterior rami of the spinal nerves which make up the nerves of the lumbar and sacral plexus.[2]

Embryology

During embryologic development the spinal cord, the fetal spinal cord is the same length as the vertebral column. However, as the fetus grows, and the vertebral canal elongates at a greater relative rate compared to the spinal cord itself, the eventual result. In adulthood, the spinal cord is shorter than the vertebral column. In adults, the spinal cord terminates at the conus medullaris, at the level of L1 or L2.[3]

Blood Supply and Lymphatics

Three lumbar vertebral arteries surround each lumbar vertebral body. Lumbar vertebral arteries are direct branches off of the aorta. Spinal arterial branches differentiate into radicular and segmental arteries. Segmental branches supply vertebral bodies, and posterior arterial branches supply vertebral arches. Spinal branches enter the vertebral canal through intervertebral foramina to supply the bones, periosteum, ligaments, and meninges. Radicular and segmental arteries supply spinal nerve roots, spinal nerves, and the spinal cord. Venous drainage of the vertebral column parallels the arterial system. Additionally, there is an internal anterior lumbar venous plexus; and a posterior external venous plexus.[2]

Nerves

Upon exiting the spinal column, the posterior and anterior spinal nerve roots combine around the intervertebral foramen to form mixed spinal nerves. The mixed spinal nerves contain both motor and sensory nerve fibers. Mixed spinal nerves immediately divide into two primary rami – a posterior ramus and an anterior ramus. The posterior and anterior rami contain both sensory and motor nerve fibers. Peripheral motor nerves usually contain up to 40% sensory nerve fibers. Likewise, peripheral sensory nerves contain motor nerve fibers that innervate the smooth muscle of blood vessels, hair follicles, and sweat glands.[2]

Lumbar spinal nerves exit below their corresponding vertebral level. For example, an L1 spinal nerve will exit below the pedicle of the corresponding L1 vertebral body. Thoracic spinal nerves also exit below their corresponding vertebral level. However, in the cervical spine, the cervical nerves exit above their corresponding cervical vertebral level. For example, a C3 spinal nerve will exit above the pedicle of the C3 vertebral body.[2]

Muscles

A limited description of the specific lumbar spinal nerves includes: L1 innervates the abdominal internal obliques via the ilioinguinal nerve; L2-4 innervates iliopsoas, a hip flexor, and other muscles via the femoral nerve; L2-4 innervates adductor longus, a hip adductor, and other muscles via the obturator nerve; L5 innervates ankle dorsiflexion muscles.

The patellar reflex involves the L3/4 spinal nerves. The Achilles reflex involves the S1 spinal nerves.[2]

Physiologic Variants

A not uncommon physiologic variant of the lumbar spinal nerve root is a conjoined lumbosacral nerve root. In conjoined lumbosacral nerve roots, there are two nerve roots combined where the upper and lower spinal nerve roots are expected to be. Conjoined lumbosacral nerve roots result in an enlargement of the nerve root. Conjoined roots eventually divide and exit via separate foramina. Conjoined lumbosacral nerve roots can cause sciatica. Redundant and anastomotic nerve roots are less common than conjoined nerve roots in the lumbosacral spine. Redundant or “twinned” nerve roots have two nerve roots exiting through a single intervertebral foramen. Anastomotic nerve root anomalies involve otherwise normal nerve roots that have an anastomosis or bridging connection between two adjacent roots.[4][5]

Surgical Considerations

Surgical intervention for low back pain should be reserved for cases refractory to more conservative treatment such as physical therapy and epidural injection.[6]

Clinical Significance

Back pain is a common complaint in medicine and is the number one cause of occupationally related injury. 

Occupational workers older than the age of 40 are at a greater risk of developing back pain as compared to younger workers. A detailed, occupationally relevant, medical history and physical examination is important in making an accurate diagnosis and developing an appropriate treatment plan for back pain in the occupational setting.  

Often to make a definitive diagnosis in cases of persistent back pain, an MRI of the lumbar spine is needed. It is important to try to correlate the patient’s symptoms with the imaging findings. The different types of back pain are local, referred, radicular, and spasmodic. The most common cause of back pain is a lumbar muscle spasm. In cases of severe persistent back pain, lumbar disc disease with disc herniation/protrusion is more likely if there is an associated motor deficit. Nerve root entrapment from disc herniation/protrusion causes pain, possibly muscle spasm; and in many cases, an accompanying sensory and motor deficit is also seen.[7][8]

Imaging findings may not correlate with the patient’s symptoms. For example, a significant imaging finding of a right disc bulge at L5/S1 in a patient with symptoms of left L4/L5 nerve root distribution is a discordant finding. Anatomic correlation of disc protrusion with the affected spinal root and/or spinal nerve depends on laterally of the disc protrusion. For example, a lateral disc protrusion at the L1/L2 vertebral level will most likely affect the L1 spinal nerve; whereas a central disc protrusion at the same level will most likely affect the L2 nerve root. This is due to the position of the centrally traversing spinal nerve roots in the vertebral column and the lateral position of the exiting spinal nerves.

The likelihood of a disc protrusion or extrusions causing radicular symptoms or motor nerve deficit increase when there is preexisting central canal stenosis or intervertebral foramen narrowing. One example of radicular low back pain is sciatica (pain radiating from the low back down the posterior aspect of one or both lower extremities) which results from compression of the L5 and/or S1 component of the sciatic nerve (L5/S1).

The cause of central canal stenosis is multifactorial. Vertebral canal stenosis and can result from facet hypertrophy, ligamentum flavum hypertrophy, disc bulge, and congenital canal stenosis. Approximately 95% of disc protrusions and extrusions occur at L4-L5 and/or L5-S1.[9] 

A differential diagnosis for back pain includes but are not limited to: degenerative disc disease, spinal TB or other infection, tumor, and abdominal aortic aneurysm. Although compression of the L4 spinal nerve is most likely secondary to disc herniation, the cause of nerve compression could also be from a different etiology such as a spinal cord meningioma. A distinguishing imaging characteristic that can help to differentiate between disc bulge versus tumor or infection is leptomeningeal enhancement. Disc bulges would not show leptomeningeal enhancement; whereas, a spinal tumor or discitis may show leptomeningeal enhancement.[10]


  • Image 2357 Not availableImage 2357 Not available
    Contributed by Gray's Anatomy Plates
Attributed To: Contributed by Gray's Anatomy Plates

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Anatomy, Back, Spinal Nerve-Muscle Innervation - Questions

Take a quiz of the questions on this article.

Take Quiz
Which of the following is an incorrect nerve to muscle relationship?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Where do lumbar spinal nerves exit?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Where do the posterior and anterior spinal nerve roots combine to form mixed spinal nerves?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 56-year-old male with no significant past medical history comes to the clinic with a one-month history of low back pain and weakness in his right leg. Which of the following is the best method for making a diagnosis?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Anatomy, Back, Spinal Nerve-Muscle Innervation - References

References

Devereaux M, Low back pain. The Medical clinics of North America. 2009 Mar     [PubMed]
Devereaux MW, Anatomy and examination of the spine. Neurologic clinics. 2007 May     [PubMed]
Miao M,Lin X,Zhang Z,Zhao H, Normal development of the fetal spinal canal and spinal cord at T12 on 3.0-T MRI. Acta radiologica (Stockholm, Sweden : 1987). 2018 Aug 24     [PubMed]
Natsis K,Paraskevas G,Tzika M,Papathanasiou E, Variable origin and ramification pattern of the lateral femoral cutaneous nerve: a case report and neurosurgical considerations. Turkish neurosurgery. 2013     [PubMed]
Kovač V, Failure of lumbar disc surgery: management by fusion or arthroplasty? International orthopaedics. 2018 Nov 13     [PubMed]
Tarulli AW,Raynor EM, Lumbosacral radiculopathy. Neurologic clinics. 2007 May     [PubMed]
Kelsey JL, An epidemiological study of the relationship between occupations and acute herniated lumbar intervertebral discs. International journal of epidemiology. 1975 Sep     [PubMed]
Bartynski WS,Lin L, Lumbar root compression in the lateral recess: MR imaging, conventional myelography, and CT myelography comparison with surgical confirmation. AJNR. American journal of neuroradiology. 2003 Mar     [PubMed]
Lucey BP,Tihan T,Pomper MG,Olivi A,Laterra J, Spinal meningioma causing diffuse leptomeningeal enhancement. Neurology. 2003 Jan 28     [PubMed]
Böttcher J,Petrovitch A,Sörös P,Malich A,Hussein S,Kaiser WA, Conjoined lumbosacral nerve roots: current aspects of diagnosis. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2004 Mar     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of NP-Adult Acute Gerontology. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for NP-Adult Acute Gerontology, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in NP-Adult Acute Gerontology, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of NP-Adult Acute Gerontology. When it is time for the NP-Adult Acute Gerontology board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study NP-Adult Acute Gerontology.