Neuroanatomy, Sensory Nerves

Article Author:
Lindsey Koop

Article Editor:
Prasanna Tadi

Editors In Chief:
Mohamed Hegazy
Najib Murr

Managing Editors:
Avais Raja
Orawan Chaigasame
Khalid Alsayouri
Kyle Blair
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Abbey Smiley
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beenish Sohail
Hajira Basit
Phillip Hynes
Sandeep Sekhon

4/7/2019 8:09:05 PM


The sensory system is the portion of the nervous system responsible for processing input from the environment. Beginning with detection through the transfer of stimuli to the central nervous system, the peripheral nerves and their associated receptors rapidly relay information. The peripheral nervous system consists of the somatosensory nervous system and autonomic nervous system. The sensory pathway of the somatosensory system involves spinal nerves which transmit information about the external environment to the spinal cord. The autonomic nervous system has visceral sensory neurons which are responsible for monitoring the internal environment and eliciting appropriate changes in effector organs to maintain homeostasis. This article will address both somatic and visceral sensory neurons with an emphasis on the clinical significance of somatic sensory neuropathy.

Structure and Function

The anatomy of peripheral nerves consists of nerve fibers, supporting connective tissue, and blood supply. Sensory neurons are the afferent limb of somatosensory neural pathways. The neuron consists of a cell body, axon, and dendrites. Dendrites are finger-like projections that receive sensory input and transmit the signal through the axon to the cell body. Unipolar cell bodies of sensory neurons are located within sensory ganglia which may be in the dorsal root of the spinal cord or along cranial nerves. The receptive field of the neurons limits the ability of the sensory system to relay environmental information. An individual neuron's receptive field is the space in which a stimulus can modify the electrical activity of the neuron. There are different types of receptors for differing stimuli: thermoreceptors, mechanoreceptors, nociceptors, photoreceptors, and chemoreceptors. The receptors within a specific field react to stimuli by generating electrical activity along the associated first-order neuron in the form of an action potential.

Sensory nerves have different types of nerves fibers depending on their associated receptors. Classification of sensory nerves includes the numerical or Erlanger and Gasser system.[1] Proprioceptors (position sensors) receive innervation via type Ia (A-alpha: muscle spindle), Ib (A-alpha: Golgi tendon organ), and II (A-beta: touch and pressure) sensory fibers. These fibers are large and myelinated with rapid conduction velocities. Mechanoreceptor innervation is by type II and III (A-delta: free nerve endings, cold) sensory fibers. Nociceptors (pain sensors) and thermoreceptor innervation by type III and IV (C: slow pain, heat) fibers. A-delta fibers are thinly myelinated and transmit information primarily related to acute pain to facilitate a withdrawal reflex upon synapse in the dorsal horn of the spinal cord. C fibers are smaller, unmyelinated fibers that require a higher threshold of stimulus than A-delta fibers. These are responsible for the slower onset of deeper pain after an initial insult relayed by the faster A-delta fibers.[2]

To summarize, in order of decreasing diameter and velocity:

  • Proprioceptors: A-alpha, A-beta
  • Mechanoreceptors: A-beta, A-delta
  • Nociceptors and thermoreceptors: A-delta, C-fiber

The supportive structures of the nerve fibers include the mesoneurium, epineurium, perineurium, endoneurium, and myelin sheath.[3] The mesoneurium is the connective tissue sheath that suspends the nerve trunk within the soft tissue and is continuous with the underlying epineurium. The epineural sheath contains the extrinsic blood vessels, and further internal plexuses lie in the epineurium, perineurium, and endoneurium. The interfascicular epineurium is loose connective tissue composed of longitudinal collagen fibers that protect the nerve trunk against mechanical stress. The perineurium is the connective tissue layer covering individual fascicles or bundles of axons. The endoneurium is the fibrous tissue directly covering individual axons. Individual axons are insulated by myelin (except for C fibers) which is produced by Schwann cells in the peripheral nervous system.

Visceral sensory nerves transmit pain, stretch, temperature, and chemical change in visceral organs which gets interpreted as sensations like nausea, hunger, gas, cramping, etc.[4] General visceral afferent fibers are considered part of the autonomic nervous system, but unlike the efferent arm, GVA fibers do not classify as sympathetic or parasympathetic.[5] GVA run with general somatic afferent (GSA) fibers in the gray matter of the dorsal horn and can cause referred pain. Referred pain takes place in the dermatome of the corresponding spinal segment of the signal-producing internal organ. For example, myocardial ischemia can refer to the left shoulder; this is due to misinterpretation of the visceral signal as a somatic pain signal by the cortex since the fibers run together centrally. Cranial nerves with GVA fibers include the glossopharyngeal nerve and vagus nerve and explains "brain freezes" as thermoreceptors of the palate sense something very cold causing reflexive vasoconstriction mediated by cranial nerves IX and X resulting in engorged sinus capillaries causing a headache.


The neural crest cells are the origin of the peripheral sensory nervous system. Neural crest cells are the detached cells of the neural plate as it separates from overlaying ectoderm. These cells give rise to the peripheral neurons with cell bodies and Schwann cells. A pair of dorsal root ganglia develop in a craniocaudal succession generating seven cervical, twelve thoracic, five lumbar, five sacral, and one pair of coccygeal dorsal root ganglia. Studies have shown that survival and differentiation of dorsal root ganglion cells rely on growth factors secreted by the neural tube including nerve growth factor, neurotrophin-3, and brain-derived neurotrophic factor (BDNF).[6][7] All peripheral nerves are initially bipolar, but the two polar processes then unite to form a single unipolar process with a peripheral extension that terminates in an afferent end with dendrites and a central extension that terminates in the spinal cord to synapse with a second-order neuron.

Blood Supply and Lymphatics

The endoneurial blood supply of peripheral nerves is the vasa nervorum. The vasa nervorum vessels are branches of adjacent vessels and are especially numerous near joints.[8] The tortuous nature of the vasa nervorum facilitates necessary translational movement of the peripheral nerves around joints. Also, these nutrient arteries form anastomoses throughout the course of the nerve and establish an extensive microvascular network that maintains the nutrition of a nerve even with the inevitable "watershed" areas that form due to variable intervals between supplying vessels.[9][10] This arterial supply contrasts with the blood supply to second-order neurons in the spinal cord because end-arteries supply the spinal cord.


The receptive field of a peripheral sensory nerve (peripheral nerve field) crosses over different dermatomes. A dermatome is an area of skin supplied by a single spinal nerve. Therefore, the map of peripheral nerve fields over the body differs from the dermatomal distribution since individual peripheral nerves are composed of multiple nerve roots. Physicians use these known fields to map sensory deficits and localize lesions.

Physiologic Variants

Recognizing physiologic variations in sensory anatomy is clinically significant because accurate EMG or NCV studies rely on the correct mapping of nerves.[11] Knowledge of anatomic variations of sensory nerves is especially useful for the surgeon harvesting skin flaps that need an accessible donor sensory nerve.[12] Examples of variations recorded in the literature include the lateral antebrachial cutaneous nerve innervating the radial border of the dorsum of the hand instead of the superficial radial nerve.[13] The most extensive literature of sensory nerve variation is of the hand with median, ulnar, and radial nerves.[14][15][16]

Surgical Considerations

Peripheral nerve surgery includes repair of acute nerve injuries, entrapment neuropathies, and nerve sheath tumor resection. Acute nerve injury can result from stretching, compression, or laceration. An example of nerve stretching is brachial plexus injury during vaginal delivery of an infant with shoulder dystocia resulting in Erb palsy.[17] Nerve stretching is typically treated conservatively with surgical exploration reserved for severe cases where spontaneous recovery with physical therapy does not happen after several months, or if tearing of nerves is suspected.[18] Entrapment neuropathies occur when a nerve is externally compressed causing compromise of blood supply and local ischemia. Symptoms include paresthesia or muscle weakness. Examples of entrapment/compression neuropathy requiring surgical intervention include carpal or tarsal tunnel syndrome, herniated disc compressing nerve roots, or thoracic outlet syndrome.[19]

Peripheral nerve sheath tumors (PNST) can be benign or malignant. Benign tumors include neurofibromas or schwannomas, and malignant PNST are typically sarcomatous. Surgical consideration of the nerve fascicle that gave rise to the PNST involves intraoperative neurophysiologic monitoring to establish if the associated fascicle has a motor function because that determines whether to do a complete or partial resection. Malignant PNST involves wide local excision, sometimes consisting of proximal amputation. Studies have shown that pre-operative biopsy of PNST results in increased risk of postoperative neurologic deficit, suggesting that referral for surgery without biopsy is recommended.[20][21] Finally, there is the management of nerve laceration, usually due to trauma. Sharp transection, such as seen with a stab wound, has a better prognosis than a crush injury. Repair involves surgical approximation of the damaged epineurium in a tension-free manner. For defects great than 5cm, the gold standard is autologous nerve grafting.[22]

Clinical Significance

The morbidity of peripheral nerve injury is highest in trauma patients, specifically the upper extremity with the radial nerve the most commonly injured. Approximately 34% of discharged upper extremity trauma patients require support services, and 16% require rehabilitation according to a recent international survey of surgeons.[23] The wide variation in clinical outcomes after peripheral nerve injury makes it difficult to compare data, especially considering the high rate of co-morbidities in these trauma patients. The sensory exam is subjective, and so the examiner must be thorough when doing the sensory exam. 

The best clinical tools for objective measurement of the extent of peripheral nerve injury include EMG and nerve conduction velocity (NCV). Characteristic findings of a compressive neuropathy on EMG include positive sharp waves representing fibrillations from denervation of muscle fibers. NCV in focal compression will show increased latency, decreased conduction velocity, reduced amplitude of motor action potential and sensory nerve action potential.[24]

The Seddon classification system of nerve injury can be used to predict the complexity of nerve regeneration.[25] This system includes neurapraxia, axonotmesis, and neurotmesis. Neurapraxia is nerve contusion due to focal nerve compression resulting in reversible local ischemia without Wallerian degeneration, in which the segment of axon distal to the injury degrades. An example would be meralgia paresthetica which is compression of the lateral femoral cutaneous nerve from tight clothing on an obese person that can often be easily be relieved by wearing looser clothing or losing weight. Axonotmesis is more severe resulting in Wallerian degeneration, but the endoneurium remains intact, and the damage is still reversible. This degeneration begins 24 to 36 hours after injury. A “stinger” is neurapraxia of the proximal upper trunk of the brachial plexus due to stretching. Spontaneous recovery occurs at a rate of 1mm per day and is usually complete as long as the fibers regenerate along their original endoneurial tubes. Nonoperative management with serial electromyography (EMG) is indicated for neurapraxia and axonotmesis.[26] Finally, neurotmesis is complete nerve division that is irreversible without surgical repair. As discussed previously, primary repair of the epineurium is crucial to ensure proper regeneration of the original fiber pattern with the best prognosis for recovery of function. About 2.5% of all peripheral nerve injuries today cannot be surgically repaired.[27]

The differential for non-traumatic peripheral neuropathy includes:

  • Immune-mediated
  • Metabolic
  • Hereditary
  • Toxic
  • Infectious
  • Entrapment

Sensory neuropathies can represent the neurologic manifestations of systemic disease.[27] Ascending, symmetric sensory loss in the context of recent infection with albuminocytologic dissociation on CSF analysis represents acute inflammatory demyelinating polyneuropathy (AIDP/GBS). Mononeuropathy multiplex, which is neuropathy of individual peripheral nerves in a multifocal distribution, can be seen in Churg-Strauss, polyarteritis nodosa, and Wegener granulomatosis. The most common metabolic neuropathy is seen in diabetes mellitus presenting as distal symmetric polyneuropathy. The A-delta and C fibers are the first involved since they are the smallest, so the insidious onset of symmetric loss of temperature and light touch sensation in a “stocking and glove” distribution is the common initial presentation. This neuropathy distribution is also characteristic of vitamin B12 deficiency.[28] Other vitamin deficiencies characterized by peripheral neuropathies include B1, B6, vitamin E, and niacin. Hereditary neuropathies include neurocristopathies such as neurofibromatosis and Charcot-Marie-Tooth.[29] Neurofibromatosis type I (NF1) is associated with cutaneous neurofibromas and NF2 involves bilateral acoustic schwannomas. Charcot-Marie-Tooth is a chronic demyelinating disease of the peripheral nerves associated with foot deformities like pes cavus, foot drop due to lower extremity weakness, and sensory deficits especially along the distribution of the peroneal nerve. Other hereditary diseases with peripheral neuropathy include the sphingolipidoses like Krabbe disease, metachromatic leukodystrophy, and Fabry disease. Neuropathies associated with infections include HIV distal sensory polyneuropathy due to neurotoxic side effects of anti-retroviral therapy and mononeuropathy associated with other infections like CMV. Lyme disease can cause facial neuropathy, unilateral or bilateral. Leprosy is the most common infectious cause of neuropathy in the world, presenting with painful mononeuropathies of cool areas like the nose, ears, and distal limbs.[30] Finally, entrapment and compressive neuropathies like carpal tunnel syndrome (median neuropathy) or peroneal neuropathy (meralgia paresthetica) can occur and be addressed surgically if sufficiently severe.

  • Image 4194 Not availableImage 4194 Not available
    Contributed by Wikimedia Commons (Public Domain)
Attributed To: Contributed by Wikimedia Commons (Public Domain)

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Neuroanatomy, Sensory Nerves - Questions

Take a quiz of the questions on this article.

Take Quiz
A toddler places his hand on a hot stove and rapidly withdraws it before his mother has the chance to yell at him. What type of afferent sensory nerve fiber was responsible for the reflexive withdrawal of his hand?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
A 48-year-old woman presents with a 4-month history of sharp, shooting pain down the back of her right leg, originating in the gluteal region down to the plantar surface of the right foot. MRI showed cervical cord compression at C5-C6 secondary to cervical spondylosis. Decompressive surgery relieved her leg pain. Irritation of which neural tracts by the cervical cord compression caused this funicular leg pain?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
A 20-year-old primigravida woman with a history of gestational diabetes is in active labor and has been pushing for 2 hours. After delivery of the head, the provider is unable to deliver the shoulder of the baby. McRoberts maneuver with suprapubic pressure is employed which facilitates the delivery of the 4500 g neonate. Which of the following sensory deficit is expected to be found in the neonate on the physical examination as a result of this obstetric complication?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
A 25-year-old man suffers a deep laceration on the medial right arm. He finds his wrist is stuck in a supinated, extended position and he has limited movement of his thumb. When he tries to make a fist, he cannot curl his index or middle finger into his palm. He has some numbness in his hand as well. Which nerve is likely injured and which component of the nerve requires surgical repair?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up

Neuroanatomy, Sensory Nerves - References


Watson JC,Dyck PJ, Peripheral Neuropathy: A Practical Approach to Diagnosis and Symptom Management. Mayo Clinic proceedings. 2015 Jul;     [PubMed]
Beran R, Paraesthesia and peripheral neuropathy. Australian family physician. 2015 Mar;     [PubMed]
Schraut NB,Walton S,Bou Monsef J,Shott S,Serici A,Soulii L,Amirouche F,Gonzalez MH,Kerns JM, What Protects Certain Nerves from Stretch Injury? Anatomical record (Hoboken, N.J. : 2007). 2016 Jan;     [PubMed]
Gebhart GF,Bielefeldt K, Physiology of Visceral Pain. Comprehensive Physiology. 2016 Sep 15;     [PubMed]
Spencer NJ,Zagorodnyuk V,Brookes SJ,Hibberd T, Spinal afferent nerve endings in visceral organs: recent advances. American journal of physiology. Gastrointestinal and liver physiology. 2016 Dec 1;     [PubMed]
Yuan Q,Sun L,Yu H,An C, Human microvascular endothelial cell promotes the development of dorsal root ganglion neurons via BDNF pathway in a co-culture system. Bioscience, biotechnology, and biochemistry. 2017 Jul;     [PubMed]
Chao YC,Xie F,Li X,Guo R,Yang N,Zhang C,Shi R,Guan Y,Yue Y,Wang Y, Demethylation regulation of BDNF gene expression in dorsal root ganglion neurons is implicated in opioid-induced pain hypersensitivity in rats. Neurochemistry international. 2016 Jul;     [PubMed]
Qureshi AI,Saleem MA,Ahrar A,Raja F, Imaging of the Vasa Nervorum Using Contrast-Enhanced Ultrasound. Journal of neuroimaging : official journal of the American Society of Neuroimaging. 2017 Nov;     [PubMed]
Cellek S,Cameron NE,Cotter MA,Muneer A, Pathophysiology of diabetic erectile dysfunction: potential contribution of vasa nervorum and advanced glycation endproducts. International journal of impotence research. 2013 Jan;     [PubMed]
Ishibe K,Tamatsu Y,Miura M,Shimada K, Morphological study of the vasa nervorum in the peripheral branch of human facial nerve. Okajimas folia anatomica Japonica. 2011 Nov;     [PubMed]
Davidovich ER,Nascimento OJ, Superficial radial nerve-lateral antebrachial cutaneous nerve anatomic variation. Brain and behavior. 2014 Jan;     [PubMed]
Jeon SK,Paik DJ,Hwang YI, Variations in sural nerve formation pattern and distribution on the dorsum of the foot. Clinical anatomy (New York, N.Y.). 2017 May;     [PubMed]
Eid EM,Hegazy AM, Anatomical variations of the human sural nerve and its role in clinical and surgical procedures. Clinical anatomy (New York, N.Y.). 2011 Mar;     [PubMed]
Guru A,Kumar N,Ravindra Shanthakumar S,Patil J,Nayak Badagabettu S,Aithal Padur A,Nelluri VM, Anatomical Study of the Ulnar Nerve Variations at High Humeral Level and Their Possible Clinical and Diagnostic Implications. Anatomy research international. 2015;     [PubMed]
Falconer D,Spinner M, Anatomic variations in the motor and sensory supply of the thumb. Clinical orthopaedics and related research. 1985 May;     [PubMed]
Bas H,Kleinert JM, Anatomic variations in sensory innervation of the hand and digits. The Journal of hand surgery. 1999 Nov;     [PubMed]
Raducha JE,Cohen B,Blood T,Katarincic J, A Review of Brachial Plexus Birth Palsy: Injury and Rehabilitation. Rhode Island medical journal (2013). 2017 Nov 1;     [PubMed]
Kubiak CA,Kung TA,Brown DL,Cederna PS,Kemp SWP, State-of-the-Art Techniques in Treating Peripheral Nerve Injury. Plastic and reconstructive surgery. 2018 Mar;     [PubMed]
Middleton SD,Anakwe RE, Carpal tunnel syndrome. BMJ (Clinical research ed.). 2014 Nov 6;     [PubMed]
Levi AD,Ross AL,Cuartas E,Qadir R,Temple HT, The surgical management of symptomatic peripheral nerve sheath tumors. Neurosurgery. 2010 Apr;     [PubMed]
Stratton JA,Assinck P,Sinha S,Kumar R,Moulson A,Patrick N,Raharjo E,Chan JA,Midha R,Tetzlaff W,Biernaskie J, Factors Within the Endoneurial Microenvironment Act to Suppress Tumorigenesis of MPNST. Frontiers in cellular neuroscience. 2018;     [PubMed]
Muir D, The potentiation of peripheral nerve sheaths in regeneration and repair. Experimental neurology. 2010 May;     [PubMed]
Scholz T,Krichevsky A,Sumarto A,Jaffurs D,Wirth GA,Paydar K,Evans GR, Peripheral nerve injuries: an international survey of current treatments and future perspectives. Journal of reconstructive microsurgery. 2009 Jul;     [PubMed]
Raducha JE,Gil JA,DeFroda SF,Wawrzynski J,Weiss AC, An Evidence-Based Approach to the Differentiation of Compressive Neuropathy from Polysensory Neuropathy in the Upper Extremity. JBJS reviews. 2017 Oct;     [PubMed]
Kaya Y,Sarikcioglu L, Sir Herbert Seddon (1903-1977) and his classification scheme for peripheral nerve injury. Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery. 2015 Feb;     [PubMed]
Torg JS, Cervical spinal stenosis with cord neurapraxia and transient quadriplegia. Sports medicine (Auckland, N.Z.). 1995 Dec;     [PubMed]
Wang E,Inaba K,Byerly S,Escamilla D,Cho J,Carey J,Stevanovic M,Ghiassi A,Demetriades D, Optimal timing for repair of peripheral nerve injuries. The journal of trauma and acute care surgery. 2017 Nov;     [PubMed]
Schloss J,Colosimo M, B Vitamin Complex and Chemotherapy-Induced Peripheral Neuropathy. Current oncology reports. 2017 Oct 5;     [PubMed]
Ramchandren S, Charcot-Marie-Tooth Disease and Other Genetic Polyneuropathies. Continuum (Minneapolis, Minn.). 2017 Oct;     [PubMed]
Santos DFD,Mendonça MR,Antunes DE,Sabino EFP,Pereira RC,Goulart LR,Goulart IMB, Revisiting primary neural leprosy: Clinical, serological, molecular, and neurophysiological aspects. PLoS neglected tropical diseases. 2017 Nov;     [PubMed]


The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Neurology-Epilepsy. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Neurology-Epilepsy, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Neurology-Epilepsy, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Neurology-Epilepsy. When it is time for the Neurology-Epilepsy board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Neurology-Epilepsy.