Hyperbaric Physiological And Pharmacological Effects Gases


Article Author:
Adam Kahle


Article Editor:
Jeffrey Cooper


Editors In Chief:
Venkat Minnaganti
John Brusch
Janak Koirala


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Trevor Nezwek
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
6/1/2019 2:32:57 PM

Introduction

For a long time, hyperbaric oxygen therapy (HBOT) has been used in clinical practice to treat decompression sickness, carbon monoxide poisoning, clostridial infections, and enhance wound healing. However, newer applications of this therapy have been shown to successfully treat a wide range of conditions such as compartment syndrome, burns and frostbite, and even sensorineural hearing loss. HBOT works through inhalation of high concentrations of oxygen in a pressurized chamber. Under typical therapeutic conditions, the amount of oxygen dissolved in the plasma may reach levels greater than 20 times that of breathing room air at normal atmospheric pressure. Oxygen-rich plasma can then be transported to the hypoxic or ischemic tissue to promote angiogenesis, reduce edema, and even modulate the immune system response.[1][2][3]

Function

The function of HBOT can roughly be divided into two types of effects, physiologic and pharmacologic, with much overlap. Oxygen  can be thought of as both a naturally occurring element essential for life, and as a drug used to alter disease pathology. Indeed, HBOT uses oxygen as a drug and therefore, has proper dosing protocols, a therapeutic index, and side effects that need to be understood in order to be used safely and effectively.[4][5][6]

Physiological Effects

Under normal conditions at sea level, ambient air is composed of approximately 21% oxygen resulting in an alveolar oxygen pressure (PAO2) of about 100 mmHg. Under these conditions, plasma hemoglobin is almost entirely saturated, and there is minimal dissolved plasma oxygen. Therefore, assuming a hemoglobin concentration of 12 g/dL, the combined blood oxygen content in whole blood is about 16.2 mL O2/dL. Under hyperbaric conditions breathing 100% oxygen at 3 atmospheres absolute (ATA), the PAO2 value increases to around 2280 mmHg; and according to Henry’s law the combined oxygen content in whole blood increases to 23.0 mL O2/dL. This 42% increase from baseline is almost entirely from an increase in oxygen dissolved in plasma. The increase in oxygen supply and arterial oxygen tension forms the basis of HBOT.[7][8][9]

Oxygen is primarily used by the body in the formation of adenosine triphosphate, the molecule responsible for intracellular energy transfer, through a process called cellular respiration. The average human uses around 6 mL of O2/dL of blood to maintain metabolism; therefore, HBOT offers sufficient plasma oxygen to drive cellular respiration and the potential to overcome massive hemorrhagic anemia.

Another main physiological effect of oxygen relates to vasoconstriction. Increased levels of oxygen cause a decrease in local nitric oxide (NO) production by endothelial cells, thereby leading to vasoconstriction. Conversely, increased levels of carbon dioxide, the byproduct of respiration, promote NO production and vasodilation. This is especially important as it relates to cerebral blood flow as short-term hyperoxia causes cerebral vasoconstriction and reduced blood flow. However, even with reduced blood flow, more oxygen is delivered to the cerebrum as a result of the hyperoxic state. Additionally, hyperoxia has also been shown to decrease cerebral edema, although the mechanisms behind this are still not well understood and further studies are needed to characterize this proposed phenomenon. Applications of these effects have some promise in acute brain injury.

Pharmacological Effects

As previously stated, oxygen is used as a drug to treat a variety of conditions through a variety of pharmacologic mechanisms. However, only a small portion of these effects will be discussed here. Perhaps the most common use of HBOT today is in wound healing. Problem wounds resulting from diabetic complications, pressure ulcers, burns, delayed radiation injury, or skin grafts are quite prevalent. Poor healing is often a result of a combination of endarteritis, tissue hypoxia, and inadequate collagen synthesis. Increased arterial oxygen tension of HBOT promotes modulation of a number of growth factors, angiogenesis, and arborization, and enhances the immune system response to infection leading to enhanced healing.

HBOT has been shown to upregulate the production of vascular endothelial growth factor (VEGF), variants of platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF) partially through nitric oxide modulation. VEGF and PDGF are responsible for stimulating capillary budding and wound granulation, and do so by altering signaling pathways leading to cell proliferation and migration. FGF plays a similar role in angiogenesis, but also induces neural development, keratinocyte organization, and fibroblast proliferation at wound sites leading to granulation and epithelialization.

Oxygen also has antibacterial effects at wound sites. As neutrophils and macrophages enter these environments to kill bacteria and remove necrotic material, they consume large amounts of oxygen. Oxygen is then utilized by these cells to create hydrogen peroxide, superoxide anions, hydrochloric acid, and hydroxyl radicals. Through indirect and direct mechanisms, these reactive oxygen species (ROS) can then kill bacteria both intracellularly and extracellularly through membrane disruption and protein denaturation.

Carbon monoxide poisoning and decompression sickness (DCS) are probably the most classic conditions treated with HBOT. Carbon monoxide poisoning occurs after smoke or automobile fume inhalation. It is particularly deadly because carbon monoxide binds hemoglobin with an affinity greater than 200 times that of oxygen, thus impairing cellular respiration. HBOT can decrease this burden by reducing the half-life of carbon monoxide dissociation from hemoglobin through the law of mass action. Under normobaric conditions breathing room air, the half-life of carboxyhemoglobin is 4-6 hours, but breathing 100% oxygen at 3 ATA reduces the half-life to 23 minutes.

DCS occurs when gases in the bloodstream become less soluble following rapid ascent from diving. These gases form bubbles and result in symptoms ranging from severe musculoskeletal pain to paralysis; and in the most severe cases, an air gas embolism can result in death. When HBOT is administered, compression of the bubbles occurs, and their volume is reduced according to Boyle’s law. Under 3 ATA, bubble volume can be reduced by one-third. With a reduction in size, bubbles can be better eliminated, circulation is improved, and local hypoxia is reversed. Oxygen is also paramount in displacing nitrogen in the bubbles through diffusion, essentially dissolving the bubbles away.

Issues of Concern

Oxygen toxicity most commonly affects the lungs, central nervous system (CNS), and eyes. Pulmonary oxygen toxicity, formerly known as the Lorrain Smith effect, usually manifests as coughing progressing to chest pain, burning pain on inhalation, and dyspnea. Symptoms often resolve after cessation of the dive, and long-term complications are considered to be inconsequential, though special consideration should be given to current smokers or those with respiratory conditions.

CNS toxicity, formerly known as the Paul Bert effect, is a more severe complication and can result in the seizure. Luckily this is relatively uncommon with an incidence of between 0.2 to 3 in 10,000. Initial symptoms are nonspecific and may include vision changes, tinnitus, anxiety, or nausea, but can quickly progress to a tonic-clonic seizure. To date, no serious sequelae or increased risk of subsequent seizures have been found. Factors thought to lower the seizure threshold include the history of epilepsy, hypoglycemia, hyperthyroidism, current fever, and select drugs such as penicillin and disulfiram.

Ocular toxicity has been shown to affect both the retina and lens. The retinopathy is thought to be due to abnormal angiogenesis and fibroblast production, while myopia occurs due to a transient increase in refractive power of the lens. Both of these conditions will usually reverse within days to weeks following cessation of HBOT, though there is a risk of premature cataract development.

Apart from oxygen toxicity, the most common side effects of concern are barotrauma from the pressures used, and confinement anxiety while in the chamber. Barotrauma of the tympanic membrane is most common with a reported incidence as high as 2%, though barotrauma of the sinuses can also occur. The potential for tympanic membrane barotrauma is usually ameliorated by auto-inflating the middle ear through the Valsalva maneuver or placement of tympanostomy tubes. Anyone with a significant history of middle or inner ear pathology should be carefully screened. Claustrophobia can also be overcome with the familiarity of the chamber and use of anxiolytics during therapy.

Clinical Significance

There are currently many FDA-approved clinical applications of HBOT with quality evidence of its effectiveness. Most recently, treatment of acute sensorineural hearing loss with HBOT was recognized in 2011. A number of other approved indications such as severe anemia, crush injuries, necrotizing soft tissue infections, and osteomyelitis have been mentioned above; however, not all health care providers are aware of the effectiveness of HBOT and often refer patients after the critical window of opportunity has passed. [10]

Therefore, it is essential to educate the medical community that HBOT reaches beyond DCS in divers and carbon monoxide poisoning. Surgeons can use HBOT preoperatively and postoperatively to improve surgical outcomes. Internists can better treat diabetic foot ulcers or refractory anemia, while otolaryngologists can treat hearing loss with HBOT. The list of approved and experimental conditions continues to grow, and it is essential for providers to not only familiarize themselves with HBOT but to educate their patients about its potential and offer it as supplementary therapy when appropriate.

Enhancing Healthcare Team Outcomes

Just like any form of medical treatment, HBOT has potential side effects, complications, and contraindications. Side effects can be divided into two categories, those related to oxygen, and those related to the hyperbaric conditions and the chamber itself. Breathing 100% oxygen at greater than 2 ATA for prolonged periods of time can result in oxygen toxicity. This phenomenon is still not completely understood, but it is thought to be due to natural byproducts of cellular respiration called reactive oxygen species (ROS). ROS can damage cell structures like cellular membranes and cause oxidative stress.


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Hyperbaric Physiological And Pharmacological Effects Gases - Questions

Take a quiz of the questions on this article.

Take Quiz
A 72-year-old man presents to the emergency room with confusion, headache, and emesis after being found sleeping in his home with his car running in the garage. Hyperbaric oxygen therapy (HBOT) is immediately started. By what mechanism will HBOT improve this patient’s condition?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 67-year-old male is referred to the hyperbaric department for treatment of clostridial myonecrosis in his lower leg. By which of the following mechanisms does hyperbaric oxygen therapy work?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 42-year-old female with a history of poorly controlled diabetes mellitus, tobacco abuse, and radionecrosis of her breast after mastectomy for breast cancer has undergone multiple treatments of hyperbaric oxygen without issue. During this treatment after 4 hours at 3.0 ATA, she becomes very anxious, begins sweating, and has an aura followed by a seizure. What may have been done prior to treatment to prevent her seizure?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
When breathing gasses under pressure, some physiologic responses can be predicted. Which of the following is true?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
When diving, multiple different gases have been used to decrease the likelihood of toxicity, narcosis or decompression illness. Which of the following gases is most likely to have issues related to heat loss?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Hyperbaric Physiological And Pharmacological Effects Gases - References

References

Ilmi MI,Yunus F,Guritno M,Damayanti T,Samoedro E,Nazaruddin AM,Nurwidya F, Comparison of lung function values of trained divers in 1.5 ATA hyperbaric chamber after inhaling 100% oxygen and regular air: a crossover study. Advances in respiratory medicine. 2017;     [PubMed]
Poff AM,Kernagis D,D'Agostino DP, Hyperbaric Environment: Oxygen and Cellular Damage versus Protection. Comprehensive Physiology. 2016 Dec 6;     [PubMed]
Cechin S,Alvarez-Cubela S,Giraldo JA,Molano RD,Villate S,Ricordi C,Pileggi A,Inverardi L,Fraker CA,Domínguez-Bendala J, Influence of in vitro and in vivo oxygen modulation on β cell differentiation from human embryonic stem cells. Stem cells translational medicine. 2014 Mar;     [PubMed]
Winklewski PJ,Kot J,Frydrychowski AF,Nuckowska MK,Tkachenko Y, Effects of diving and oxygen on autonomic nervous system and cerebral blood flow. Diving and hyperbaric medicine. 2013 Sep;     [PubMed]
Maslova MN,Klimova VK, [Hyperbaria and stress]. Zhurnal evoliutsionnoi biokhimii i fiziologii. 2012 Sep-Oct;     [PubMed]
Godman CA,Joshi R,Giardina C,Perdrizet G,Hightower LE, Hyperbaric oxygen treatment induces antioxidant gene expression. Annals of the New York Academy of Sciences. 2010 Jun;     [PubMed]
Oh S,Lee E,Lee J,Lim Y,Kim J,Woo S, Comparison of the effects of 40% oxygen and two atmospheric absolute air pressure conditions on stress-induced premature senescence of normal human diploid fibroblasts. Cell stress     [PubMed]
Demchenko IT,Oury TD,Crapo JD,Piantadosi CA, Regulation of the brain's vascular responses to oxygen. Circulation research. 2002 Nov 29;     [PubMed]
Rothfuss A,Speit G, Investigations on the mechanism of hyperbaric oxygen (HBO)-induced adaptive protection against oxidative stress. Mutation research. 2002 Oct 31;     [PubMed]
Lambertsen CJ, Extension of oxygen tolerance in man: philosophy and significance. Experimental lung research. 1988;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Infectious Disease. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Infectious Disease, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Infectious Disease, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Infectious Disease. When it is time for the Infectious Disease board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Infectious Disease.