Truncus Arteriosus


Article Author:
Suneet Bhansali


Article Editor:
Colin Phoon


Editors In Chief:
Jon Parham
Abigail Frank
Jon Sivoravong


Managing Editors:
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Frank Smeeks
Kristina Soman-Faulkner
Benjamin Eovaldi
Radia Jamil
Sobhan Daneshfar
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Hajira Basit
Phillip Hynes


Updated:
6/4/2019 1:51:29 PM

Introduction

Persistent truncus arteriosus (TA) is a rare, congenital, cyanotic heart defect characterized by a ventricular septal defect (VSD), a single truncal valve, and a common ventricular outflow tract (OT). Systemic venous blood and pulmonary venous blood mix at the VSD level, and the resulting desaturated blood is ejected into the single OT. Because the pulmonary arteries arise directly from the truncus, the pulmonary vascular resistance (PVR) will determine the pulmonary blood flow, which is usually torrential. Without surgical intervention, death in infancy is the rule. Long-term surgical outcomes are good, but there are often residual and potential complications that require regular, long-term cardiology follow-up.[1][2]

Etiology

TA results if proper embryological processes fail to create a truncoconal septal wall, and the single truncal root does not divide into the separate aortic and pulmonic outflow tracts. This also inhibits the proper creation of separate aortic and pulmonary valves resulting in a single truncal valve.[3]

While no direct cause is known, TA is frequently associated with 22q11 genetic mutations.[4]

Epidemiology

TA is seen with an annual incidence of seven per 100,000 live births, and while it accounts for less than 1% of all congenital heart lesions, it accounts for 4% of critical congenital heart defects.[5]

Pathophysiology

To understand the pathophysiology of TA, it is first important to understand the path of blood flow and anatomy. In patients with TA, systemic venous blood normally returns to the right atrium and flows into the right ventricle. Pulmonary venous blood from the lungs normally flows through the pulmonary veins into the left atrium and to the left ventricle. The VSD allows oxygenated and deoxygenated blood to mix before it is ejected through a common truncal valve to a single great artery, subsequently supplying the coronary, pulmonary and systemic circulations.

The common semilunar valve may have 1 to 4 cusps with tricuspid most frequently seen. The presence of a single arterial trunk can be associated with several cardiac, aortic, and pulmonary abnormalities. These abnormalities include right-sided, interrupted, or hypoplastic aortic arches, abnormal origins of the coronary arteries, pulmonary artery stenosis, and patent ductus arteriosus. Depending on the origins of the pulmonary arteries, Collett and Edwards (CE) and Van Praagh each classified various forms of TA. Collett and Edwards based their system solely on the origins of the pulmonary vascular system, while Van Praagh also took into account aortic abnormalities.[6][7][8][9][10]

Throughout fetal development and the first week of life, PVR is relatively high, resulting in greater shunting of mixed oxygenated and deoxygenated blood into the systemic circuit causing mild cyanosis. As the PVR drops and PBF increases, pulmonary over-circulation causes congestive heart failure (CHF). If left untreated, pulmonary over-circulation may eventually lead to severe irreversible pulmonary vascular disease and death. As pulmonary vascular disease worsens, PVR increases. This results in worsening cyanosis or right-to-left shunt (Eisenmenger syndrome).[2][11][12]

The mixing of pulmonary and systemic blood before departure from the heart combined with the degree of pulmonary blood flow (PBF) and pulmonary vascular resistance (PVR) drives the pathophysiology and the clinical picture.[2][5]

History and Physical

The clinical picture is driven by the PBF as well as the presence of valvular abnormalities and aortic arch obstruction. In the first few days after birth, the critical congenital heart defect (CCHD) screen in these patients show pre-and post-ductal oxygen saturation less than 95% with mild or unnoticeable cyanosis. Unscreened infants present within the first two weeks for evaluation of a heart murmur or with symptoms of CHF resulting from increased blood flow to the lungs. These infants exhibit poor feeding, lethargy, tachypnea, costal-sternal retractions, grunting, nasal flaring, tachycardia, or hepatomegaly.[2]

The cardiac exam will be notable for an ejection click and systolic murmur, single loud second heart sound, and a diastolic murmur if truncal valve regurgitation is present. Peripheral pulses may be bounding due to excess runoff into the pulmonary arteries. During diastole, an increased pulmonary vascular flow may correlate with higher pulse pressures.[13][14][15]

Valvular insufficiency and stenosis are common phenomena. Valvular regurgitation, seen in 50% of patients, can worsen symptoms of CHF. Concurrent critical coarctation, seen in 10% of TA patients, can lead to cardiovascular collapse with patients presenting in shock or even death.[11][12][16]

Evaluation

Definitive prenatal diagnosis by fetal echocardiography requires visualization of a single arterial outflow tract, a VSD, and the absence of a pulmonary valve. Postnatal diagnosis is suggested by the history and physical findings mentioned above along with abnormal results of the CCHD screening test. Electrocardiogram shows non-specific changes in early infancy with LV or RV hypertrophy, or higher QRS and P-wave voltages in older patients with increased PBF. Chest plain films will depict cardiomegaly and increased pulmonary vascular markings. Echocardiogram confirms the diagnosis and can delineate the anatomy in great detail. Cardiac magnetic resonance imaging (MRI), catheterization, and angiography can be used to assess the anatomy and cardiac function further if needed for pre-surgical planning and post-surgical evaluation. Genetic testing is recommended for all patients born with truncus arteriosus due to the frequent association with 22q11 genetic mutations.[2][4][17][18][19]

Treatment / Management

The initial management revolves around stabilization of the patient and balancing the amount of blood flow through the pulmonary and systemic circuits. Care is typically provided in a neonatal or cardiac intensive care setting.

Treatment of Pulmonary Congestion and CHF[20]

  1. Use loop and thiazide diuretics to help achieve proper fluid balance
    1. Improve LV failure by reducing excess volume, filling pressure, and pulmonary congestion.
    2. Improve RV failure by maintaining control of systemic venous congestion.
  2. Patients in respiratory distress may require additional positive-pressure support (CPAP, SiPAP, endotracheal intubation).
  3. Avoid the use of supplemental oxygen as this may worsen pulmonary over-circulation.
  4. Correct any metabolic derangements, electrolyte abnormalities, hypoglycemia, and anemia to prevent worsening heart failure.[2]

Prostaglandin Infusion

Promote ductal patency with prostaglandin infusion if there is a concurrent aortic arch anomaly.[7]

Definitive Surgical Correction with a Single-Stage Repair Within the First Month of Life

  1. Procedure for TA without truncal valve or aortic arch abnormality[7]
    1. Mobilization of pulmonary arteries from the truncus to the RV with conduit-based RVOT reconstruction
    2. Closure of the VSD with a patch
  2. Aortic arch abnormalities and the truncal valve should also be fixed at this time.[21]
  3. Primary palliation with pulmonary arterial banding and delayed surgical repair may be required to allow the infant to grow. This two-stage correction is not routinely recommended due to higher rates of morbidity and mortality.[22]

Immediate Post-Operative Care Should be Provided in a Cardiac Intensive Care Unit.[23]

  1. Fluid and electrolyte management, sedation and pain control, respiratory control, cardiovascular management, renal function, neurological status, infection control, nutritional status are all important factors to consider during the post-operative period.
  2. While noninvasive monitoring of the heart rate, respiratory rate, and oxygen saturation are the most basic requirements, invasive pulmonary and atrial catheters with central and arterial lines can be used for closer continuous monitoring.

Differential Diagnosis

New technological advances have improved the rate of correctly diagnosing TA prenatally to greater than 90%. However, TA may be misdiagnosed as tetralogy of Fallot (ToF) with pulmonary atresia if structures cannot be identified correctly on prenatal echocardiography. Postnatally, the two may be differentiated clinically by the presence of a murmur in TA but no murmur in ToF as well as the greater degree of cyanosis in ToF. Some lesions that may cause a similar degree of mild cyanosis include tetralogy of Fallot with pulmonary atresia, critical pulmonary stenosis, tricuspid atresia, total anomalous pulmonary venous return/circulation and hypoplastic left heart syndrome. Postnatally, the differential diagnosis for cardiac lesions causing hemodynamic shock also includes hypoplastic left heart syndrome and critical coarctation of the aorta.[17][24]

Complications

There are few complications associated with TA before surgical intervention. If a patient has DiGeorge syndrome, then one must monitor for complications associated with hypocalcemia. In the older, unrepaired infant who has received little or no cardiac care, a higher risk of infections is present if 22q11 deletions are present. Most complications occur post-operatively and usually in the first 48 hours postoperatively. Specific postoperative complications include pulmonary hypertensive crisis and low cardiac output syndrome. Decreased manipulation and mobilization of patients may achieve a decreased rate of pulmonary hypertensive crisis during the immediate post-operative phase. Right bundle branch block and arrhythmias such as supraventricular tachycardia were also noted. Complications requiring surgical re-intervention in the immediate post-operative period include mediastinal bleeding, pleural effusion, pneumothorax, cardiac tamponade. Problems common to any surgery included seizures and other nervous system injuries, prolonged bleeding times, and renal failure.[25]

As patients outgrow their RV-PA conduit or truncal valve insufficiency worsens, re-interventions are inevitable. By the 10-year, postoperative period, approximately 75% of patients required re-intervention, with the number one cause being RVOT reconstruction, followed by valve repair/replacement, and relief of aortic obstruction.[25][26][27]

Without the recommended single-stage repair, patients often die before two months of age. The 1-year survival rate for unrepaired patients is less than 20%. By age 4, pulmonary vascular obstructive disease becomes so severe that surgery is futile and patients die before the second decade due to cardiac failure. After the primary repair, patients have a 20-year survival rate over 80%, but the rate of reoperation remains high. Therefore, long-term follow-up is recommended.[5][25]

Deterrence and Patient Education

Life-long follow-up with a cardiologist trained in CHD should be emphasized to all patients. In the long-term, patients and physicians should pay close attention to changes in exercise tolerance, history of palpitations or syncope, or the emergence of edema and dyspnea. It is important to note any diastolic murmur as a sign of valve insufficiency or conduit regurgitation, pulmonary congestion and peripheral edema as a sign of CHF, and elevated jugular venous pulse or hepatomegaly as a sign of increasing right heart pressures.[21][26]

Routine testing with serial echocardiography is recommended to evaluate the RV-PA connection, biventricular function, and truncal valve stenosis or insufficiency. Patients with symptoms of heart failure or arrhythmia will require more frequent evaluations with electrocardiography, echocardiography, or stress-testing. If these tests are insufficient, further testing with MRI or computed tomography is useful.[28]

Pearls and Other Issues

Latin for single artery, truncus arteriosus, results in too much blood flow to the lungs and too little oxygenated blood delivered to the body.

Surgery is the only definitive treatment, but repeat interventions are ubiquitous, so long-term follow-up with a congenital heart disease specialist is advised. Without surgical intervention, most patients would die before their first birthday.

Enhancing Healthcare Team Outcomes

An interprofessional approach to truncus arteriosus is recommended.

Team-based healthcare delivery starts very early after conception for these patients with high-risk obstetricians and fetal cardiac imaging specialists. After delivery, the timing of surgical re-intervention and/or trans-catheter intervention is also important to enhance outcomes. Especially given the common association with 22q11 microdeletion syndromes, and the need for open-heart surgery in the newborn period, team-based case in childhood should include the pediatric cardiologist, a pediatric cardiac surgeon, an intensivist, residents or fellows, geneticist, and a radiologist. As patient care most often occurs in a neonatal or cardiac intensive care unit, specific team members are vital. In addition to the physicians mentioned above, teams should also have a charge nurse and bedside nurse, respiratory therapist, nutrition specialist, social worker, pharmacist, and radiographers.[21][29] (Level IV) [4][30][31] (Level V)

With increasing success in surgical and post-operative management and the advent of new technological advances, children with congenital heart disease are surviving well into adulthood. This, however, comes with an array of questions revolving around transitions of clinical care, recommendations for daily and competitive activity, medications and adherence, routine medical and dental care, acquisition of proper insurance and healthcare providers, reproductive issues including pregnancy and contraception, and education and career planning. Physicians should be aware that impairments in cognition, social interactions, communication skills, and executive functioning are well documented in children with complex heart disease, so as these patients reach adolescence and adulthood, an important consideration should be given to addressing these issues at the appropriate times and with the appropriate members of the care team. For the adult, a specialist in adult congenital heart disease (ACHD) is ideal, but an electrophysiologist and interventional cardiologist may also be required. Additionally, an internal medicine provider may prove beneficial in coordinating required care with a high-risk obstetrician, neurologist, psychologist/psychiatrist, endocrinologist, and geneticist. Other critical members of the ACHD team include nurses and nurse practitioners, physician assistants, cardiac anesthesiologists with training in CHD, a hepatologist, and a cardiac pathologist. Services that may be required include rehabilitation services, psychological services, social services, and financial counselors. The smooth transition of care to adult medicine is critical.[28][32][33] (Level V)


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Truncus Arteriosus - Questions

Take a quiz of the questions on this article.

Take Quiz
Which of the following disorders does not cause cyanosis?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Failure of the aorticopulmonary membrane to fuse often leads to development of which of the following?

(Move Mouse on Image to Enlarge)
  • Image 4863 Not availableImage 4863 Not available
    Contributed by Centers for Disease Control and Prevention (Public Domain)
Attributed To: Contributed by Centers for Disease Control and Prevention (Public Domain)



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What is the basic defect in truncus arteriosus?

(Move Mouse on Image to Enlarge)
  • Image 4863 Not availableImage 4863 Not available
    Contributed by Centers for Disease Control and Prevention (Public Domain)
Attributed To: Contributed by Centers for Disease Control and Prevention (Public Domain)



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which develops into the pulmonary trunk?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A baby is born with truncus arteriosus but is minimally symptomatic. At what time should surgery be undertaken?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following congenital heart disorders frequently has an aortic valve with four cusps?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A child is born with micrognathia and cleft lip and palate. A chest x-ray shows the absence of a thymic silhouette. A maternal uncle is known to have the same condition. Which of the following is most likely associated with this condition?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A full-term infant who was diagnosed prenatally with truncus arteriosus is born, and truncus arteriosus is confirmed with post-natal echocardiography. No dysmorphic features are notable on physical exam. The infant's heart rate is 120 beats/min, blood pressure 85/55 mmHg, respiratory rate 45 breaths/min, and oxygen saturation 85% on room air. Which of the following is the most appropriate next step in the management of this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 2-week-old male who was born at home at 39 weeks gestational age to a 28-year-old first-time mother now presents to the emergency department with a complaint of trouble feeding. The mother states that the child was initially feeding well but in the last 3 days has not been able to take more than 10 minutes of breastmilk at a time before he starts to sweat and falls asleep. She denies fever, vomiting, diarrhea, sick contacts, and shaking or seizure-like episodes. The mother was lost to prenatal care after the first visit, as she was out of the country and returned 1 week before delivery. The infant’s temperature is 98.6F, heart rate 190 beats/min, blood pressure 85/50 mmHg, and respiratory rate 70 breaths/min. Pulse oximetry readings in all four extremities are 86% to 88% on room air. The infant is awake and moving all extremities, fontanelles are flat, mucous membranes are dry, and distal pulses are weak. A 3/6 holosystolic murmur is heard at the left sternal border. Blood is drawn for a complete blood count, basic metabolic panel, liver function tests, and cultures. Which of the following is the best next diagnostic step?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A full-term infant who was diagnosed prenatally with a congenital heart lesion is born, and post-natal echocardiograph confirms the diagnosis by showing a single truncal valve, ventricular septal defect, and common ventricular outflow tract. No dysmorphic features are notable on physical exam. The infant's heart rate is 135 beats/min, blood pressure 88/58 mmHg, respiratory rate 48 breaths/min, and oxygen saturation 85% on room air which does not improve with 100% oxygen. Which of the following is true regarding this child?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following statements is false regarding patients with truncus arteriosus?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A child is born with micrognathia, cleft lip and palate, hypertelorism, and truncus arteriosus. Which of the following is also most likely to be present in the patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Truncus Arteriosus - References

References

Moorman A,Webb S,Brown NA,Lamers W,Anderson RH, Development of the heart: (1) formation of the cardiac chambers and arterial trunks. Heart (British Cardiac Society). 2003 Jul     [PubMed]
McElhinney DB,Driscoll DA,Emanuel BS,Goldmuntz E, Chromosome 22q11 deletion in patients with truncus arteriosus. Pediatric cardiology. 2003 Nov-Dec     [PubMed]
Reller MD,Strickland MJ,Riehle-Colarusso T,Mahle WT,Correa A, Prevalence of congenital heart defects in metropolitan Atlanta, 1998-2005. The Journal of pediatrics. 2008 Dec     [PubMed]
Konstantinov IE,Karamlou T,Blackstone EH,Mosca RS,Lofland GK,Caldarone CA,Williams WG,Mackie AS,McCrindle BW, Truncus arteriosus associated with interrupted aortic arch in 50 neonates: a Congenital Heart Surgeons Society study. The Annals of thoracic surgery. 2006 Jan     [PubMed]
Butto F,Lucas RV Jr,Edwards JE, Persistent truncus arteriosus: pathologic anatomy in 54 cases. Pediatric cardiology. 1986     [PubMed]
Marcelletti C,McGoon DC,Mair DD, The natural history of truncus arteriosus. Circulation. 1976 Jul     [PubMed]
Niwa K,Perloff JK,Kaplan S,Child JS,Miner PD, Eisenmenger syndrome in adults: ventricular septal defect, truncus arteriosus, univentricular heart. Journal of the American College of Cardiology. 1999 Jul     [PubMed]
Chew C,Halliday JL,Riley MM,Penny DJ, Population-based study of antenatal detection of congenital heart disease by ultrasound examination. Ultrasound in obstetrics     [PubMed]
Mawad W,Mertens LL, Recent Advances and Trends in Pediatric Cardiac Imaging. Current treatment options in cardiovascular medicine. 2018 Feb 21     [PubMed]
Samyn MM, A review of the complementary information available with cardiac magnetic resonance imaging and multi-slice computed tomography (CT) during the study of congenital heart disease. The international journal of cardiovascular imaging. 2004 Dec     [PubMed]
Gotsch F,Romero R,Espinoza J,Kusanovic JP,Erez O,Hassan S,Yeo L, Prenatal diagnosis of truncus arteriosus using multiplanar display in 4D ultrasonography. The journal of maternal-fetal     [PubMed]
Ricci Z,Haiberger R,Pezzella C,Garisto C,Favia I,Cogo P, Furosemide versus ethacrynic acid in pediatric patients undergoing cardiac surgery: a randomized controlled trial. Critical care (London, England). 2015 Jan 7     [PubMed]
Naimo PS,Fricke TA,Yong MS,d'Udekem Y,Kelly A,Radford DJ,Bullock A,Weintraub RG,Brizard CP,Konstantinov IE, Outcomes of Truncus Arteriosus Repair in Children: 35 Years of Experience From a Single Institution. Seminars in thoracic and cardiovascular surgery. 2016 Summer     [PubMed]
Kalavrouziotis G,Purohit M,Ciotti G,Corno AF,Pozzi M, Truncus arteriosus communis: early and midterm results of early primary repair. The Annals of thoracic surgery. 2006 Dec     [PubMed]
Asagai S,Inai K,Shinohara T,Tomimatsu H,Ishii T,Sugiyama H,Park IS,Nagashima M,Nakanishi T, Long-term Outcomes after Truncus Arteriosus Repair: A Single-center Experience for More than 40 Years. Congenital heart disease. 2016 Dec     [PubMed]
Alfieris GM,Swartz MF, The Initial Glimpse at Long-term Outcomes Following the Repair of Truncus Arteriosus. Seminars in thoracic and cardiovascular surgery. 2016 Summer     [PubMed]
Graziani F,Delogu AB, Evaluation of Adults With Congenital Heart Disease. World journal for pediatric     [PubMed]
G�mez O,Soveral I,Bennasar M,Crispi F,Masoller N,Marimon E,Bartrons J,Gratac�s E,Martinez JM, Accuracy of Fetal Echocardiography in the Differential Diagnosis between Truncus Arteriosus and Pulmonary Atresia with Ventricular Septal Defect. Fetal diagnosis and therapy. 2016     [PubMed]
Balachandran R,Nair SG,Kumar RK, Establishing a pediatric cardiac intensive care unit - Special considerations in a limited resources environment. Annals of pediatric cardiology. 2010 Jan     [PubMed]
Williams JM,de Leeuw M,Black MD,Freedom RM,Williams WG,McCrindle BW, Factors associated with outcomes of persistent truncus arteriosus. Journal of the American College of Cardiology. 1999 Aug     [PubMed]
Stout KK,Daniels CJ,Aboulhosn JA,Bozkurt B,Broberg CS,Colman JM,Crumb SR,Dearani JA,Fuller S,Gurvitz M,Khairy P,Landzberg MJ,Saidi A,Valente AM,Van Hare GF, 2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Journal of the American College of Cardiology. 2018 Aug 10     [PubMed]
Chen Q,Gao H,Hua Z,Yang K,Yan J,Zhang H,Ma K,Zhang S,Qi L,Li S, Outcomes of Surgical Repair for Persistent Truncus Arteriosus from Neonates to Adults: A Single Center's Experience. PloS one. 2016     [PubMed]
Martin BJ,Karamlou TB,Tabbutt S, Shunt Lesions Part II: Anomalous Pulmonary Venous Connections and Truncus Arteriosus. Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies. 2016 Aug     [PubMed]
Lenox CC,Debich DE,Zuberbuhler JR, The role of coronary artery abnormalities in the prognosis of truncus arteriosus. The Journal of thoracic and cardiovascular surgery. 1992 Dec     [PubMed]
Sandrio S,R�ffer A,Purbojo A,Gl�ckler M,Dittrich S,Cesnjevar R, Common arterial trunk: current implementation of the primary and staged repair strategies. Interactive cardiovascular and thoracic surgery. 2015 Dec     [PubMed]
Puri K,Allen HD,Qureshi AM, Congenital Heart Disease. Pediatrics in review. 2017 Oct     [PubMed]
Van Praagh R, Truncus arteriosus: what is it really and how should it be classified? European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery. 1987     [PubMed]
Tlaskal T,Hucin B,Kucera V,Vojtovic P,Gebauer R,Chaloupecky V,Skovranek J, Repair of persistent truncus arteriosus with interrupted aortic arch. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery. 2005 Nov     [PubMed]
Lantin-Hermoso MR,Berger S,Bhatt AB,Richerson JE,Morrow R,Freed MD,Beekman RH 3rd, The Care of Children With Congenital Heart Disease in Their Primary Medical Home. Pediatrics. 2017 Nov     [PubMed]
Huff C,Mastropietro CW,Riley C,Byrnes J,Kwiatkowski DM,Ellis M,Schuette J,Justice L, Comprehensive Management Considerations of Select Noncardiac Organ Systems in the Cardiac Intensive Care Unit. World journal for pediatric     [PubMed]
Calder L,Van Praagh R,Van Praagh S,Sears WP,Corwin R,Levy A,Keith JD,Paul MH, Truncus arteriosus communis. Clinical, angiocardiographic, and pathologic findings in 100 patients. American heart journal. 1976 Jul     [PubMed]
TAUSSIG HB, Clinical and pathological findings in cases of truncus arteriosus in infancy. The American journal of medicine. 1947 Jan     [PubMed]
TANDON R,HAUCK AJ,NADAS AS, PERSISTENT TRUNCUS ARTERIOSUS. A CLINICAL, HEMODYNAMIC, AND AUTOPSY STUDY OF NINETEEN CASES. Circulation. 1963 Dec     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Family Medicine. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Family Medicine, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Family Medicine, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Family Medicine. When it is time for the Family Medicine board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Family Medicine.