Coronary Artery Dissection

Article Author:
Jai Parekh
Jay Mohan

Article Editor:
Joann Porter

Editors In Chief:
Jon Parham
Abigail Frank
Jon Sivoravong

Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Trevor Nezwek
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi

7/4/2019 6:58:53 PM


Coronary artery dissection can be spontaneous, traumatic, or due to iatrogenic causes. This review will focus on spontaneous coronary artery dissection (SCAD). Spontaneous coronary artery dissection is the non-traumatic and non-iatrogenic separation of the coronary arterial wall. It is an uncommon cause of acute myocardial infarction. It affects young to middle-aged women with men accounting for less than 10% to 15% of cases in most large contemporary series. Although historically it was thought to be rare, the increased use of early angiography to assess acute chest pain presentations has resulted in recognition of spontaneous coronary artery dissection as more common. The condition poses diagnostic challenges and significant therapeutic dilemmas given the lack of research to guide management.[1][2][3][4][5]


In most cases, a predisposing arterial disease association or cause is identified. However, up to 20% cases are labeled as idiopathic.[6][7][8]

  • Predisposing factors include fibromuscular dysplasia, pregnancy, early post-partum state, multiparity, mechanical stressors (e.g., vomiting, coughing, heavy lifting and Valsalva type maneuvers), emotional stressors, connective tissue disorders (e.g., Marfan, Ehler-Danlos, Loeys-Dietz) and systemic inflammatory conditions.
  • All the above factors in some way increase the coronary artery wall stress, resulting in weakening of the arterial wall and predisposing to spontaneous dissections.


Most patients who are at low-risk for the conventional atherosclerotic disease are underdiagnosed and possibly have lower rates of presentation; therefore, the true incidence of spontaneous coronary artery dissection is unknown. In the general population, spontaneous coronary artery dissection is the cause of acute coronary syndrome (ACS) in 0.1% to 0.4% cases. It mainly affects young females, and it has been reported to account for nearly a quarter of ACS cases in women younger than 50 years old. Spontaneous coronary artery dissection is also increasingly reported to occur in older and postmenopausal women. Less than 10% to 15% cases occur in men.


Non-atherosclerotic spontaneous coronary artery dissection arises from a tear in the tunica intima of the blood vessel, with blood entering and separating the layers of the arterial wall. A false lumen is eventually created in the medial layer which is filled with intramural hematoma. The increasing pressure of the false lumen by an enlarging hematoma causes external compression of the true coronary lumen resulting in restricted coronary blood flow and eventually leading to coronary insufficiency. This should be differentiated from atherosclerotic dissections, which result from plaque rupture or erosions allowing blood to enter the intimal space and from iatrogenic dissections that occur during coronary procedures.

History and Physical

Patients with spontaneous coronary artery dissection usually present with symptoms and signs characteristic of acute myocardial infarction (MI). Chest or shoulder pain, syncope, dyspnea, diaphoresis, and nausea associated with elevation of cardiac enzymes are the most common presentation. A small proportion (3% to 14%) of patients present with resuscitated ventricular arrhythmias. Some cases present as sudden unexplained death, although, because of the challenges of accurate post-mortem diagnosis, this condition is under-represented in most cases.

A high index of clinical suspicion is required for women presenting with typical chest pain and ECG or cardiac biomarker abnormalities.



Most patients present with elevated troponins, but there are no blood biomarkers currently available which distinguish spontaneous coronary artery dissection from other causes of ACS.


The diagnosis of spontaneous coronary artery dissection in most patients is made at the time of coronary angiography. In patients for whom the diagnosis is not secured with coronary angiography, intracoronary imaging with optical coherence tomography (OCT) or intravascular ultrasound (IVUS) may be helpful. 

The coronary angiographic appearance of spontaneous coronary artery dissection has been classified into three types:

  • Type 1: Pathognomonic identifiable false lumen with a linear filling defect or dissection flap. There is often contrast hold-up in the false lumen after clearance of the true lumen (29% to 48%).
  • Type 2: Diffuse, long, and smooth stenosis that can vary mild stenosis to complete occlusion (52% to 67%).
  • Type 3: Mimics atherosclerosis with focal or tubular stenosis and requiring optical coherence tomography (OCT) or intravascular ultrasound (IVUS) to differentiate the cause (2% to 3.9%).

While spontaneous coronary artery dissection has been reported in all coronary segments, it has a frequent predilection for distal coronary segments. When proximal segments are involved, they more commonly have a type 1 appearance, and distal segments usually have a type 2 appearance. Left anterior descending artery is identified to be the most commonly affected vessel in majority studies.

Treatment / Management

Spontaneous coronary artery dissection poses major therapeutic challenges given limited evidence to guide management. Therefore, the choice of medical treatment, percutaneous coronary intervention (PCI), coronary artery bypass grafting (CABG), fibrinolytic therapy, mechanical hemodynamic support and heart transplantation is largely dictated by the clinical presentation and the degree of compromise to coronary flow on the angiographic study. Conservative therapy, rather than revascularization, is the preferred strategy for most patients.[9][7]



Patients presenting with acute myocardial infarction who have symptoms of ongoing ischemia or hemodynamic compromise should be considered for revascularization with PCI or CABG. However, revascularization in patients with spontaneous coronary artery dissection is technically challenging and associated with higher failure rates or complications. Until further evidence is available to guide therapy, a conservative approach is recommended in patients with non-critical luminal obstruction, normal TIMI grade 3 flow, and a stable clinical situation.

Fibrinolytic therapy

Fibrinolytic therapy in spontaneous coronary artery dissection is avoided because of risks of dissection, expansion, or even rupture leading to cardiac tamponade.

Medical Management

There are currently no clinical trials to guide optimal medical management following spontaneous coronary artery dissection. Patients should be considered for long-term aspirin and beta-blocker therapy. Dual antiplatelet therapy followed by antiplatelet monotherapy is usually indicated in patients who have undergone PCI with stenting for spontaneous coronary artery dissection. The indication is unclear in patients without stents. Anticoagulant therapy is not recommended due to the risks of dissection extension/expansion.

Statin therapy should be considered for patients with dyslipidemia. In patients with left ventricular systolic dysfunction following spontaneous coronary artery dissection, the addition of angiotensin-converting enzyme inhibitors (ACEi), angiotensin receptor antagonists (ARB), and aldosterone antagonists are recommended.

Implantable Cardioverter-Defibrillator (ICD)/Mechanical Left Ventricular Assist Devices (LVAD)/Heart Transplantation

Extreme cases of significant myocardial injury, hemodynamic instability, and cardiogenic shock may require LVAD as a bridge to transplantation. ICD placement should be considered for secondary prevention in patients with severe left ventricular function impairment.

Pearls and Other Issues

Risk of Recurrence

The rate of recurrence ranges from 5% to 19% of cases. Recurrent events may occur in the same or different artery. Many patients continue to experience significant chest pain after healing of the primary lesion.[10]

Contraception after spontaneous coronary artery dissection

Due to the role of sex hormones in the pathogenesis of spontaneous coronary artery dissection, the use of hormonal contraceptives in women post-spontaneous coronary artery dissection is controversial. Barrier contraceptives and hormone free intra-uterine contraceptives may be used.

Enhancing Healthcare Team Outcomes

Carotid artery dissection is a rare disorder that is best managed by a multidisciplinary team that includes a neurologist, radiologist, vascular surgeon, ICU nurses, and an internist. While the rare patient may require surgery, the majority of patients can be managed with thrombolytic therapy and endovascular stenting. [8][11]

The outlook for patients who have no neurological deficit at presentation is good. The patient must be informed on the need for better blood pressure control and elimination of risk factors for atherosclerosis.[12]

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Coronary Artery Dissection - Questions

Take a quiz of the questions on this article.

Take Quiz
Which angiographic finding is most commonly found in patients with spontaneous coronary artery dissection?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
Which of the following is the most appropriate management for patients with spontaneous coronary artery dissection who are hemodynamically stable and have non-critical luminal obstruction?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up
A 52-year-old woman with a history of resistant hypertension presents to the emergency department with complaints of chest tightness radiating to the left arm, dyspnea, diaphoresis, and headache for the past 45 minutes. Physical examination reveals faint heart sounds and a bruit in the right flank. Troponin levels are elevated. EKG shows normal sinus rhythm with non-specific ST-T wave changes. The patient is admitted for emergent angiography which reveals type 2 spontaneous coronary artery dissection (SCAD). Which of the following condition is the most likely predisposing factor for SCAD in this patient?

Click Your Answer Below

Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.

Sign Up

Coronary Artery Dissection - References


Yeung DF,Saw J, Multiple recurrences of spontaneous coronary artery dissection in a woman with fibromuscular dysplasia. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography     [PubMed]
Subramaniam K,Siew SF,Mahmood MS, Sudden cardiac death in a young adult man due to spontaneous coronary artery dissection. The Malaysian journal of pathology. 2019 Apr;     [PubMed]
Phang C,Whitbourn R, Percutaneous coronary intervention in recurrent spontaneous coronary artery dissection: a case report. European heart journal. Case reports. 2019 Mar;     [PubMed]
Cepas-Guillén PL,Flores-Umanzor EJ,Sabate M,Masotti M, Multivessel spontaneous coronary artery dissection involving the left main coronary artery: a case report. European heart journal. Case reports. 2019 Mar;     [PubMed]
Y-Hassan S,Henareh L, Fibrinolysis-treated myocardial infarction in a patient with missed spontaneous coronary artery dissection associated with takotsubo syndrome: case report. European heart journal. Case reports. 2018 Dec;     [PubMed]
Daniel ECA,Falcão JLAA, Spontaneous Coronary Artery Dissection - Case Report and Literature Review. Arquivos brasileiros de cardiologia. 2019 Apr;     [PubMed]
Gilhofer TS,Saw J, Spontaneous coronary artery dissection: a review of complications and management strategies. Expert review of cardiovascular therapy. 2019 Apr;     [PubMed]
Almaddah NK,Morsy MS,Dishmon D,Khouzam RN, Spontaneous coronary artery dissection: An often unrecognized cause of acute coronary syndrome. Cleveland Clinic journal of medicine. 2019 Apr;     [PubMed]
Main A,Lombardi WL,Saw J, Cutting balloon angioplasty for treatment of spontaneous coronary artery dissection: case report, literature review, and recommended technical approaches. Cardiovascular diagnosis and therapy. 2019 Feb;     [PubMed]
Alfonso F,García-Guimaraes M,Bastante T,de la Cuerda F,Antuña P,Cuesta J,Rivero F, Spontaneous coronary artery dissection: from expert consensus statements to evidence-based medicine. Journal of thoracic disease. 2018 Jul;     [PubMed]
Liu X,Xu C,Liu C,Su X, Clinical characteristics and long-term prognosis of spontaneous coronary artery dissection: A single-center Chinese experience. Pakistan journal of medical sciences. 2019 Jan-Feb;     [PubMed]
Tanaka A, Shedding Light on Pathophysiology of Spontaneous Coronary Artery Dissection. JACC. Cardiovascular imaging. 2019 Mar 8;     [PubMed]


The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Family Medicine. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Family Medicine, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Family Medicine, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Family Medicine. When it is time for the Family Medicine board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Family Medicine.