EMS, Improvised Explosive Devices And Terrorist Activity


Article Author:
Thomas Ferreri


Article Editor:
Alec Weir


Editors In Chief:
Mitchell Farrell
Brian Froelke


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
2/25/2019 7:17:11 AM

Introduction

Events such as the Boston Marathon bombing and the Manchester attack are reminders that terrorist attacks are of great concern to the general public. The various types of weapons of mass destruction (WMDs) can be remembered by the acronym CBRNE which stands for chemical, biological, radiological, nuclear, and explosive weapons. The focus of this paper will be improvised explosive devices (IEDs).[1][2][3]

The United States Department of Defense defines IEDs as “devices placed or fabricated in an improvised manner incorporating destructive, lethal, noxious, pyrotechnic or incendiary chemicals, designed to destroy, disfigure, distract or harass…” Explosive-related injuries were once thought to be related solely to combat medicine. While the IED is considered one of the greatest threats to troops operating in Afghanistan during the War on Terror, they are not exclusively confined to the battlefield as civilian-targeted terrorist attacks like those mentioned above are becoming more commonplace. In fact, Kluger states that “[b]ombing and explosions directed against innocent civilians have become the primary instrument of global terror…” It is of great importance that medical personnel be aware of the threat of terrorist-related IED attacks so that the appropriate steps can be taken if such an event were to occur.

Issues of Concern

Physics

Blast injuries are the classification of injuries that can be sustained by explosives, and to fully comprehend these injuries, practitioners must first understand the physics behind an explosion. Explosions occur due to an exothermic reaction that is generated when chemical bonds are disrupted. This ultimately causes the solid or liquid explosive material to be converted to a gas, which rapidly expands, releasing a large amount of energy. The explosion created by an IED can be classified into high-energy, which creates a supersonic high-pressure blast wave or low-energy explosion which creates a subsonic explosion without a blast wave. Examples of high-energy explosives include material such as TNT, C4, Semtex, nitroglycerin, dynamite, and ammonia nitrate fuel oil, while materials like gunpowder and petroleum are examples of substances that cause low-energy explosions. Upon contact with a target, a significant amount of kinetic energy is dispersed which ultimately leads to the injury patterns described below.[4][5][6]

Blast Injury Classification  

A primary blast injury is a type of barotrauma, which results from the interaction of a blast wave with the body. Hollow viscous organs such as tympanic membranes, the lungs, and the gastrointestinal organs are at particular risk in this specific type of blast injury. Blast lung injury (BLI) will be discussed below.

Secondary blast injury results in penetrating trauma by bomb fragments and other projectiles. Some IEDs can be specifically enhanced with objects such as nails, metal ball bearings, or screws with the specific goal to cause a secondary blast injury and inflict as much trauma as possible. Energy from the explosive wave is transferred into the objects that then act as either high-energy or low-energy missiles.

A tertiary blast injury occurs when the victim becomes displaced due to the pressure wave. The victim is ultimately propelled and encounters a stationary object such as a wall, which leads to direct, blunt trauma. This can lead to injuries such as traumatic brain injury, closed skull fractures, limb amputations, and musculoskeletal injuries.

Quaternary blast injury is a broader term to describe all other explosion-related injuries, which may include burns of various degrees or other types of toxic exposure.

Clinical Significance

Approach to IED-related Injury

The clinical approach a practitioner takes to explosive-related injuries depends on the experience of the provider. Tactical Combat Casualty Care (TCCC) is a protocol-based, pre-hospital guideline for trauma care that is specific to the battlefield. However, considering most pre-hospital providers responding to IED detonation will not be familiar with TCCC, it is important for responders to implement Advanced Trauma Life Support (ATLS). The primary survey in ATLS consists of the ABCs, Airway, Breathing, and Circulation. However, in the case of an explosive detonation, exsanguination secondary to hemorrhage is an important caveat responder must consider. Therefore, instead of ABC, medical personnel should implement CABC, Catastrophic Bleeding, Airway, Breathing, and Circulation. The ‘C’ standing for ‘Catastrophic Bleeding’ reminds medical personnel that hemorrhage control should take precedence over airway security as exsanguination is associated with most potentially survivable deaths on the battlefield, and therefore, can be thought to have more deleterious outcomes as compared to airway compromise in the victim of an explosion. Moreover, hemorrhage is the second leading cause civilian-related trauma death furthering the idea that the CABC-model is of great importance.[7][8][9]

Hemorrhage Control

Upon arriving at the scene of an explosion, there are important steps that medical professionals should take to control hemorrhage as exsanguination is of great concern in such a situation. Therefore, direct pressure with sterile packing and application with of a tourniquet is the mainstay of treatment with active bleeding. In fact, there are some recommendations that first responders should apply bilateral tourniquets to a victim of an explosion, even if there is no active bleeding as there is thought that bleeding will likely occur when resuscitation with intravenous fluid is initiated. One study found that the application of the Combat Application Tourniquet (CAT) was an effective tool during civilian trauma (including terrorist events) to control extremity hemorrhage while offering few complications. While other tourniquets like the Combat Ready Clamp (CRoC) and the Junctional Emergency Treatment Tool (JETT) are the preferred tools by military medics, familiarity with them by non-combat medical providers could prove to be very useful, as both devices have proved to occlude arterial flow in less than 1 minute.

In addition to the use of the tourniquet, hemostatic agents are another means by which responders can attempt to manage bleeding. The 2 products discussed below are part of the recommendations and guidelines of the Tactical Combat Casualty Care (TCCC). While TCCC protocol is less likely to be known to civilian physicians and medical personnel, non-combat out of hospital providers should still be aware of the applicability of these products. One animal study compared the commonly used QuickClot Combat Gauze to the FDA-approved XSTAT product and found that XSTAT subjects achieved hemostasis in less time, maintained hemostasis longer and lost less blood as compared to the QuickClot group. Additionally, TXA, which is a recommended guideline by the TCCC, was found to reduce overall mortality among related to hemorrhage.

Special Considerations-Blast Lung

One special consideration of which providers treating victims of explosions should be aware is Blast Lung Injury (BLI). BLI results from barotrauma secondary to an explosive wave traveling through air and is, therefore, an example of primary blast injury. BLI is thought to be secondary to pressure differentials generated upon tissues of different densities ultimately leading to pulmonary hemorrhage, contusion or edema. BLI is a clinical diagnosis based on respiratory difficulty and hypoxia in the appropriate setting and patients with blast lung may present with dyspnea, cough or chest pain. Concerning complications of BLI secondary to an explosion include pneumothorax, hemothorax, fat embolism and air emboli, which can enter the central nervous system, ocular or coronary arterial systems. As described above, the initial pre-hospital approach should focus on CABC. After the catastrophic bleeding has been addressed with direct pressure and tourniquet placement, the focus should be moved to the airway. Patients with suspected or confirmed BLI should have high flow supplemental oxygen to prevent hypoxemia and should receive endotracheal intubation for respiratory compromise. However, providers must be aware of mechanical ventilation and the risk to precipitate or worsen conditions like alveolar rupture, pneumothorax or air embolism. Additionally, victims of explosions with suspected blast lung should be given fluids judiciously as overaggressive intravenous (IV) hydration can create volume overload and precipitate possible flash pulmonary edema.


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

EMS, Improvised Explosive Devices And Terrorist Activity - Questions

Take a quiz of the questions on this article.

Take Quiz
A 17-year-old male is brought the emergency department via ambulance after an explosion occurred at a local concert. The patient's heart rate is 115 beats per minute; blood pressure is 90/60 mmHg, respiratory rate 18 and oxygen saturation is 95% on 2 L nasal cannula. A primary survey is performed, and FAST exam is done in the emergency department that demonstrates free fluid in the peritoneal cavity. The patient was stabilized and taken to CT, which demonstrates an obvious splenic laceration as well as pieces of metal in the abdominal cavity. What type of blast injury does this represent?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
You receive a call about a large explosion at a local concert venue. The report indicates that there are multiple casualties at the scene. Regarding improvised explosive devices (IEDs), which of the following is not an example of products generating high-energy explosives?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
You are responding to an explosion at a nearby park. The first patient you encounter complains of chest pain and shortness of breath. Her vital signs are heart rate 100 bpm, blood pressure 115/85 mmHg, respiratory rate 22/minute, and oxygen saturation 95%. On physical exam, you notice that the patient is coughing frank blood but you do not see any gross deformity or ecchymosis over the chest wall and notice no jugular venous distension. What is the most likely diagnosis?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following is an example of a primary blast injury?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
You are working as an emergency medical services physician and are called to a scene where a terrorist-related explosion has just occurred. The report indicates that there is a foul smell at the scene of the explosion concerning for a chemical attack. You and your team need to first determine the environmental safety zone and recognize perimeters. Which of the following correctly pairs the control zone with its correct definition in regards to a quinary blast injury with a chemical component?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

EMS, Improvised Explosive Devices And Terrorist Activity - References

References

Singh AK,Ditkofsky NG,York JD,Abujudeh HH,Avery LA,Brunner JF,Sodickson AD,Lev MH, Blast Injuries: From Improvised Explosive Device Blasts to the Boston Marathon Bombing. Radiographics : a review publication of the Radiological Society of North America, Inc. 2016 Jan-Feb;     [PubMed]
Brunner J,Singh AK,Rocha T,Havens J,Goralnick E,Sodickson A, Terrorist bombings: foreign bodies from the Boston Marathon bombing. Seminars in ultrasound, CT, and MR. 2015 Feb;     [PubMed]
Pumera M, Analysis of explosives via microchip electrophoresis and conventional capillary electrophoresis: a review. Electrophoresis. 2006 Jan;     [PubMed]
Nerlander MP,Haweizy RM,Wahab MA,Älgå A,von Schreeb J, Epidemiology of Trauma Patients from the Mosul Offensive, 2016-2017: Results from a Dedicated Trauma Center in Erbil, Iraqi Kurdistan. World journal of surgery. 2019 Feb;     [PubMed]
Jeyaraj P,Chakranarayan A, Treatment Strategies in the Management of Maxillofacial Ballistic Injuries in Low-Intensity Conflict Scenarios. Journal of maxillofacial and oral surgery. 2018 Dec;     [PubMed]
Baker WA,Chowdhury M,Untaroiu CD, A finite element model of an anthropomorphic test device lower limb to assess risk of injuries during vertical accelerative loading. Journal of biomechanics. 2018 Nov 16;     [PubMed]
Gordon W,Talbot M,Fleming M,Shero J,Potter B,Stockinger ZT, High Bilateral Amputations and Dismounted Complex Blast Injury (DCBI). Military medicine. 2018 Sep 1;     [PubMed]
Chukwu-Lobelu R,Appukuttan A,Edwards DS,Patel HDL, Burn injuries from the london suicide bombings: a new classification of blast-related thermal injuries. Annals of burns and fire disasters. 2017 Dec 31;     [PubMed]
Hättenschwiler N,Sterchi Y,Mendes M,Schwaninger A, Automation in airport security X-ray screening of cabin baggage: Examining benefits and possible implementations of automated explosives detection. Applied ergonomics. 2018 Oct;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of EMS-Community Paramedic. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for EMS-Community Paramedic, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in EMS-Community Paramedic, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of EMS-Community Paramedic. When it is time for the EMS-Community Paramedic board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study EMS-Community Paramedic.