Hemorrhagic Shock


Article Author:
Nicholas Hooper


Article Editor:
Tyler Armstrong


Editors In Chief:
Chaddie Doerr


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Trevor Nezwek
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
5/6/2019 1:46:50 AM

Introduction

Shock refers to the inadequate perfusion of tissues due to the imbalance between oxygen demand of tissues and the body’s ability to supply it. Classically, there are four categories of shock: hypovolemic, cardiogenic, obstructive, and distributive shock. Hypovolemic shock occurs when there is decreased intravascular volume to the point of cardiovascular compromise. The hypovolemic shock could be due to severe dehydration through a variety of mechanisms or from blood loss. The pathophysiology, diagnosis, and treatment of hemorrhagic shock, a subset of hypovolemic shock, will be explored in this article.

Etiology

Though most commonly thought of in the setting of trauma, there are numerous causes of hemorrhagic shock that span many systems. Blunt or penetrating trauma is the most common cause, followed by upper and lower gastrointestinal sources. Obstetrical, vascular, iatrogenic, and even urological sources have all been described. Bleeding may be either external or internal. A substantial amount of blood loss to the point of hemodynamic compromise may occur in the chest, abdomen, or the retroperitoneum. The thigh itself can hold up to 1 L to 2 L of blood. Localizing and controlling the source of bleeding is of utmost importance to the treatment of hemorrhagic shock but beyond the scope of this article.[1][2][3][4]

Epidemiology

Trauma remains a leading cause of death worldwide with approximately half of these attributed to hemorrhage. In the United States in 2001, trauma was the third leading cause of death overall, and the leading cause of death in those aged 1 to 44 years. While trauma spans all demographics, it disproportionately affects the young with 40% of injuries occurring in ages 20 to 39 years by one country’s account. Of this 40%, the greatest incidence was in the 20 to 24-year-old range.  [5][6][7]

The preponderance of hemorrhagic shock cases resulting from trauma is high. During one year, one trauma center reported 62.2% of massive transfusions occur in the setting of trauma. The remaining cases are divided among cardiovascular surgery, critical care, cardiology, obstetrics, and general surgery, with trauma utilizing over 75% of the blood products.

As patients age, physiological reserves decrease the likelihood of anticoagulant use increases and the number of comorbidities increase. Due to this, elderly patients are less likely to handle the physiological stresses of hemorrhagic shock and may decompensate more quickly.

Pathophysiology

Hemorrhagic shock is due to the depletion of intravascular volume through blood loss to the point of being unable to match the tissues demand for oxygen. As a result, mitochondria are no longer able to sustain aerobic metabolism for the production of oxygen and switch to the less efficient anaerobic metabolism to meet the cellular demand for adenosine triphosphate. In the latter process, pyruvate is produced and converted to lactic acid to regenerate nicotinamide adenine dinucleotide (NAD+) to maintain some degree of cellular respiration in the absence of oxygen.

The body compensates for volume loss by increasing heart rate and contractility, followed by baroreceptor activation resulting in sympathetic nervous system activation and peripheral vasoconstriction. Typically, there is a slight increase in the diastolic blood pressure with narrowing of the pulse pressure. As diastolic ventricular filling continues to decline and cardiac output decreases, systolic blood pressure drops.

Due to sympathetic nervous system activation, blood is diverted away from noncritical organs and tissues to preserve blood supply to vital organs such as the heart and brain. While prolonging heart and brain function, this also leads to other tissues being further deprived of oxygen causing more lactic acid production and worsening acidosis. This worsening acidosis along with hypoxemia, if left uncorrected, eventually causes the loss of peripheral vasoconstriction, worsening hemodynamic compromise, and death.

The body’s compensation varies by cardiopulmonary comorbidities, age, and vasoactive medications. Due to these factors, heart rate and blood pressure responses are extremely variable and, therefore, cannot be relied upon as the sole means of diagnosis.

A key factor in the pathophysiology of hemorrhagic shock is the development of trauma-induced coagulopathy. Coagulopathy develops as a combination of several processes. The simultaneous loss of coagulation factors via hemorrhage, hemodilution with resuscitation fluids, and coagulation cascade dysfunction secondary to acidosis and hypothermia have been traditionally thought to be the cause of coagulopathy in trauma. However, this traditional model of trauma-induced coagulopathy may be too limited. Further studies have shown that a degree of coagulopathy begins in 25% to 56% of patients before initiation of the resuscitation. This has led to the recognition of trauma-induced coagulopathy as the sum of two distinct processes: acute coagulopathy of trauma and resuscitation-induced coagulopathy.

Trauma-induced coagulopathy is acutely worsened by the presence of acidosis and hypothermia. The activity of coagulation factors, fibrinogen depletion, and platelet quantity are all adversely affected by acidosis. Hypothermia (less than 34 C) compounds coagulopathy by impairing coagulation and is an independent risk factor for death in hemorrhagic shock.

History and Physical

Recognizing the degree of blood loss via vital sign and mental status abnormalities is important. The American College of Surgeons Advanced Trauma Life Support (ATLS) hemorrhagic shock classification links the amount of blood loss to expected physiologic responses in a healthy 70 kg patient. As total circulating blood volume accounts for approximately 7% of total body weight, this equals approximately five liters in the average 70 kg male patient.

  • Class 1: Volume loss up to 15% of total blood volume, approximately 750 mL. Heart rate is minimally elevated or normal. Typically, there is no change in blood pressure, pulse pressure, or respiratory rate.
  • Class 2: Volume loss from 15% to 30% of total blood volume, from 750 mL to 1500 mL. Heart rate and respiratory rate become elevated (100 BPM to 120 BPM, 20 RR to 24 RR). Pulse pressure begins to narrow, but systolic blood pressure may be unchanged to slightly decreased.
  • Class 3: Volume loss from 30% to 40% of total blood volume, from 1500 mL to 2000 mL. A significant drop in blood pressure and changes in mental status occur.  Heart rate and respiratory rate are significantly elevated (more than 120 BPM). Urine output declines. Capillary refill is delayed.
  • Class 4: Volume loss over 40% of total blood volume. Hypotension with narrow pulse pressure (less than 25 mmHg). Tachycardia becomes more pronounced (more than 120 BPM), and mental status becomes increasingly altered. Urine output is minimal or absent. Capillary refill is delayed.

Again, the above is outlined for a healthy 70 kg individual. Clinical factors must be taken into account when assessing patients. For example, elderly patients taking beta blockers can alter the patient’s physiologic response to decreased blood volume by inhibiting mechanism to increase heart rate. As another, patients with baseline hypertension may be functionally hypotensive with a systolic blood pressure of 110 mmHg.

Evaluation

The first step in managing hemorrhagic shock is recognition. Ideally, This should occur before the development of hypotension. Close attention should be paid to physiological responses to low-blood volume. Tachycardia, tachypnea, and narrowing pulse pressure may be the initial signs. Cool extremities and delayed capillary refill are signs of peripheral vasoconstriction.[8][9][10][11]

In the setting of trauma, an algorithmic approach via the primary and secondary surveys is suggested by ATLS. Physical exam and radiological evaluations can help localize sources of bleeding.  A trauma ultrasound, or Focused Assessment with Sonography for Trauma (FAST), has been incorporated in many circumstances into the initial surveys. The specificity of a FAST scan has been reported above 99%, but a negative ultrasound does not rule out intra-abdominal pathology.

Treatment / Management

With a broader understanding of the pathophysiology of hemorrhagic shock, treatment in trauma has expanded from a simple massive transfusion method to a more comprehensive management strategy of “damage control resuscitation.” The concept of damage control resuscitation focuses on permissive hypotension, hemostatic resuscitation, and hemorrhage control to adequately treat the “lethal triad” of coagulopathy, acidosis, and hypothermia that occurs in trauma.[12][13][14][15]

Hypotensive resuscitation has been suggested for the hemorrhagic shock patient without head trauma. The aim is to achieve a systolic blood pressure of 90 mmHg in order maintain tissue perfusion without inducing re-bleeding from recently clotted vessels. Permissive hypotension is a means of restricting fluid administration until hemorrhage is controlled while accepting a short period of suboptimal end-organ perfusion. Studies regarding permissive hypotension have yielded conflicting results and must take into account type of injury (penetrating versus blunt), the likelihood of intracranial injury, the severity of the injury, as well as proximity to a trauma center and definitive hemorrhage control.

The quantity, type of fluids to be used, and endpoints of resuscitation remain topics of much study and debate. For crystalloid resuscitation, normal saline and lactated ringers are the most commonly used fluids.  Normal saline has the drawback of causing a non-anion gap hyperchloremic metabolic acidosis due to the high chloride content, while lactated ringers can cause a metabolic alkalosis as lactate metabolism regenerates into bicarbonate.

Recent trends in damage control resuscitation focus on “hemostatic resuscitation” which pushes for early use of blood products rather than an abundance of crystalloids in order to minimalize the metabolic derangement, resuscitation-induced coagulopathy, and the hemodilution that occurs with crystalloid resuscitation. The end goal of resuscitation and the ratios of blood products remain at the center of much study and debate. A recent study has shown no significant difference in mortality at 24 hours or 30 days between ratios of 1:1:1 and 1:1:2 of plasma to platelets to packed RBCs. However, patients that received the more balanced ratio of 1:1:1 were less likely to die as a result of exsanguination in 24 hours and were more likely to achieve hemostasis  Additionally, reduction in time to first plasma transfusion has shown a significant reduction in mortality in damage control resuscitation.

In addition to blood products, products that prevent the breakdown of fibrin in clots, or antifibrinolytics, have been studied for their utility in the treatment of hemorrhagic shock in the trauma patient.  Several antifibrinolytics have been shown to be safe and effective in elective surgery. The CRASH-2 study was a randomized control trial of tranexamic acid versus placebo in trauma has been shown to decrease overall mortality when given in the first eight hours of injury.  Follow-up analysis shows additional benefit to tranexamic acid when given in the first three hours after surgery.

Damage control resuscitation is to occur in conjunction with prompt intervention to control the source of bleeding. Strategies may differ depending on proximity to definitive treatment.

Differential Diagnosis

While hemorrhage is the most common cause of shock in the trauma patient, other causes of shock are to remain on the differential. Obstructive shock can occur in the setting of tension pneumothorax and cardiac tamponade. These etiologies should be uncovered in the primary survey. In the setting of head or neck trauma, an inadequate sympathetic response, or neurogenic shock, is a type of distributive shock that is caused by a decrease in peripheral vascular resistance. This is suggested by an inappropriately low heart rate in the setting of hypotension. Cardiac contusion and infarctions can result in cardiogenic shock. Finally, other causes should be considered that are not related to trauma or blood loss. In the undifferentiated patient with shock, septic shock and toxic causes are also on the differential.

Pearls and Other Issues

Trauma is the most common cause of hemorrhagic shock, but causes can span multiple systems.

Tachycardia is typically the first abnormal vital sign of hemorrhagic shock. As the body attempts to preserve oxygen delivery to the brain and heart, blood is shunted away from extremities and nonvital organs. This causes cold and modeled extremities with delayed capillary refill. This shunting ultimately leads to worsening acidosis.

The “lethal triad” of trauma is acidosis, hypothermia, and coagulopathy.

Trauma-induced coagulopathy can occur in the absence of the hemodilution of resuscitation.

Damage control resuscitation is based on three principles: permissive hypotension, hemostatic resuscitation, and damage control surgery.  Permissive hypotension targets a systolic blood pressure of 90 mmHg accepting suboptimal perfusion to end organs for a limited time to achieve hemostasis.

Enhancing Healthcare Team Outcomes

There are many causes of shock and it is important to find the cause ASAP. Because shock carries a high morbidity and mortality, the condition is best managed by a multidisciplinary team that includes a trauma surgeon, emergency department physician, ICU nurses, general surgeon, internist and an intensivist.

With a broader understanding of the pathophysiology of hemorrhagic shock, treatment in trauma has expanded from a simple massive transfusion method to a more comprehensive management strategy of “damage control resuscitation.” The concept of damage control resuscitation focuses on permissive hypotension, hemostatic resuscitation, and hemorrhage control to adequately treat the “lethal triad” of coagulopathy, acidosis, and hypothermia that occurs in trauma.

The outcomes depend on the cause, patient age, associated comorbidity and patient response to treatment.[5][16]


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Hemorrhagic Shock - Questions

Take a quiz of the questions on this article.

Take Quiz
A trauma patient is receiving fluids at 150 ml/hr. He received two units of blood because his initial hemoglobin was 7.3 g/dl. After 4 hours, his urine output is 7 ml/hr and his central venous pressure is 3 cm of water. What is the next best step in his management?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What is most important in the initial management of severe, internal hemorrhagic shock?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following patients would not be considered for the use of a medical anti-shock trousers garment?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 17-year-old male is involved in a head-on collision with another car. He was an unrestrained passenger and is brought to the hospital with a Glasgow coma scale score of 6. A quick survey does not reveal any frank bleeding, but the patient remains hypotensive. Which of the following is least likely to account for the patient's low blood pressure?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Following trauma, which of the following scenarios can often be prevented?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
When resuscitating a traumatic brain injury patient experiencing hemorrhagic shock following penetrating trauma, what is the goal?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A patient presents to the emergency room with a pelvic fracture, head injury, and chest trauma. He is given 5000 ml of crystalloid and 1000 ml of packed red blood cells. His central venous pressure is 4 mmHg and urine output is 20 ml per hour over the past 3 hours. What is the next best step in the management of this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What is the best indicator of adequate capillary perfusion in a trauma patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following is not a possible cause of hypovolemic shock after a motor vehicle accident?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
An adult patient involved in a motor vehicle collision is brought to the emergency department in an unconscious state. On arrival, her vitals show a temperature of 96.4 degrees Fahrenheit, a respiration rate of 30 breaths per minute, a heart rate of 140 beats per minute, and a blood pressure of 80/40 mm Hg. She is cold, shivering, and perspiring profusely. She has bilateral reactive pupils but she does not respond to pain. On physical examination, she has no obvious sign of external bleeding. Which of the following cannot be the cause of hypotension in this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A female is rescued from a car accident site. On arrival to the emergency room, she has a temperature of 95.6 F, pulse rate of 150 beats per minute, respiration rate of 24 breaths per minute, blood pressure of 70/0 mmHg, and a jugular venous pressure of 0 cm H2O. She is shivering and perspiring profusely. On abdominal examination, she has mild distention but no tenderness. She has a scalp laceration but no other signs of external bleeding. Her chest x-ray, x-ray of the pelvis, and x-ray of the extremities are all normal. Her airway is secure, and she is given rapid intravenous isotonic fluid, but she remains hypotensive. What would be the next diagnostic step in this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A patient was involved in a motor vehicle accident and is bleeding in the emergency room. He is immediately taken to the operating room where the bleeding continues. It is decided prior to giving fluids that the patient should have some type of monitoring. What is the best monitor of fluid therapy for patients in shock?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
In a trauma patient, blood transfusions should maintain what level of hematocrit?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A patient comes to the emergency department after a car accident. Initial vital signs are a temperature of 97.4 Fahrenheit, a pulse of 148 beats per minute, a blood pressure of 86/40 mmHg, and a respiratory rate of 36 breaths per minute. The patient is cool and clammy. The initial therapy will most likely include which of the following?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 3-year-old, 21 kg boy is seen in the emergency department after a fall from a horse. He appears in pain and has weak peripheral pulses. Despite the initial two liters of Ringer's lactate infusion, he still appears tachycardic. What is the next step?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 17-year-old male is involved in a MVA. He suffers a left femur fracture and head trauma. He is resuscitated at the scene and stabilized. Upon transfer to the ER, his blood pressure gradually decreases and then all of a sudden drops to 60/40. He has a splint on the left leg. What is the most likely cause of his decreased blood pressure?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A male is stabbed in the right groin with injury to the common femoral artery resulting in 900 mL of blood loss. His blood pressure is 80/50 mm Hg. Increase in which of the following would be seen secondary to the hemorrhage?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following is not characteristic of early hemorrhagic shock?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following is most likely to be found in the early stages in a patient with hemorrhagic shock?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What is the first body organ to compensate in hemorrhagic shock?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Class I hemorrhage shows what percentage of blood loss?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Class II hemorrhage indicates what percentage of blood loss?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Class III hemorrhage indicates what percentage of blood loss?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Class IV hemorrhage indicates what percentage of blood loss?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A class 1 hemorrhagic shock is characterized by what percent of total blood loss in a child?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A child with class II hemorrhagic shock will have what percent of total blood loss?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A child with class III hemorrhagic shock will have what percent of total blood loss?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A child with class IV hemorrhagic shock will have what percent of total blood loss?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 5-year-old is brought into the emergency department by a flight medic after sustaining a gunshot wound on a playground at school. He is pasty in color, cold, and hypotensive with weak peripheral pulses. Hemorrhagic shock is suspected. Immediate transfusion with O-negative blood is being considered while awaiting the OR to call for the patient. What is the initial dose of blood replacement?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
Which of the following would not be expected to decrease in hemorrhagic shock?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A patient in hemorrhagic shock would be expected to present with which of the following?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Hemorrhagic Shock - References

References

Kornblith LZ,Moore HB,Cohen MJ, Trauma-Induced Coagulopathy: The Past, Present, and Future. Journal of thrombosis and haemostasis : JTH. 2019 Apr 15;     [PubMed]
Karasu E,Nilsson B,Köhl J,Lambris JD,Huber-Lang M, Targeting Complement Pathways in Polytrauma- and Sepsis-Induced Multiple-Organ Dysfunction. Frontiers in immunology. 2019;     [PubMed]
Deng M,Scott MJ,Fan J,Billiar TR, Location is the key to function: HMGB1 in sepsis and trauma-induced inflammation. Journal of leukocyte biology. 2019 Apr 4;     [PubMed]
Lewis M,Shulman I,Hudgins J,Moore EE,Inaba K, Essentials of Emergency Transfusion - the Complement to Stop the Bleed. The journal of trauma and acute care surgery. 2019 Apr 1;     [PubMed]
Eastridge BJ,Holcomb JB,Shackelford S, Outcomes of traumatic hemorrhagic shock and the epidemiology of preventable death from injury. Transfusion. 2019 Apr;     [PubMed]
Owattanapanich N,Chittawatanarat K,Benyakorn T,Sirikun J, Risks and benefits of hypotensive resuscitation in patients with traumatic hemorrhagic shock: a meta-analysis. Scandinavian journal of trauma, resuscitation and emergency medicine. 2018 Dec 17;     [PubMed]
Scerbo MH,Holcomb JB,Taub E,Gates K,Love JD,Wade CE,Cotton BA, The trauma center is too late: Major limb trauma without a pre-hospital tourniquet has increased death from hemorrhagic shock. The journal of trauma and acute care surgery. 2017 Dec;     [PubMed]
Erdman MO,Chardavoyne P,Olympia RP, School Nurses on the Front Lines of Medicine: The Approach to a Student With Severe Traumatic Bleeding. NASN school nurse (Print). 2019 Mar 28;     [PubMed]
Nagata N,Ishii N,Manabe N,Tomizawa K,Urita Y,Funabiki T,Fujimori S,Kaise M, Guidelines for Colonic Diverticular Bleeding and Colonic Diverticulitis: Japan Gastroenterological Association. Digestion. 2019;     [PubMed]
Butler FK Jr,Holcomb JB,Shackelford S,Barbabella S,Bailey JA,Baker JB,Cap AP,Conklin CC,Cunningham CW,Davis M,DeLellis SM,Dorlac WC,DuBose JJ,Eastridge B,Fisher AD,Glasser JJ,Gurney J,Jenkins DA,Johannigman J,King DR,Kotwal RS,Littlejohn LF,Mabry RL,Martin MJ,Miles EA,Montgomery HR,Northern DM,O'Connor KC,Rasmussen TE,Riesberg JC,Spinella PC,Stockinger Z,Strandenes G,Via DK,Weber MA, Advanced Resuscitative Care in Tactical Combat Casualty Care: TCCC Guidelines Change 18-01:14 October 2018. Journal of special operations medicine : a peer reviewed journal for SOF medical professionals. Winter 2018;     [PubMed]
Martel MJ, No. 115-Hemorrhagic Shock. Journal of obstetrics and gynaecology Canada : JOGC = Journal d'obstetrique et gynecologie du Canada : JOGC. 2018 Dec;     [PubMed]
Kowalski A,Brandis D, Shock Resuscitation 2019 Jan;     [PubMed]
Valentine SL,Bembea MM,Muszynski JA,Cholette JM,Doctor A,Spinella PC,Steiner ME,Tucci M,Hassan NE,Parker RI,Lacroix J,Argent A,Carson JL,Remy KE,Demaret P,Emeriaud G,Kneyber MCJ,Guzzetta N,Hall MW,Macrae D,Karam O,Russell RT,Stricker PA,Vogel AM,Tasker RC,Turgeon AF,Schwartz SM,Willems A,Josephson CD,Luban NLC,Lehmann LE,Stanworth SJ,Zantek ND,Bunchman TE,Cheifetz IM,Fortenberry JD,Delaney M,van de Watering L,Robinson KA,Malone S,Steffen KM,Bateman ST, Consensus Recommendations for RBC Transfusion Practice in Critically Ill Children From the Pediatric Critical Care Transfusion and Anemia Expertise Initiative. Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies. 2018 Sep;     [PubMed]
Tang J,Shi Z,Hu J,Wu H,Yang C,Le G,Zhao J, Optimal sequence of surgical procedures for hemodynamically unstable patients with pelvic fracture: A network meta-analysis. The American journal of emergency medicine. 2019 Apr;     [PubMed]
Dickson JM,Wang X,St John AE,Lim EB,Stern SA,White NJ, Damage Control Resuscitation Supplemented with Vasopressin in a Severe Polytrauma Model with Traumatic Brain Injury and Uncontrolled Internal Hemorrhage. Military medicine. 2018 Mar 14;     [PubMed]
Hussmann B,Schoeneberg C,Jungbluth P,Heuer M,Lefering R,Maek T,Hildebrand F,Lendemans S,Pape HC, Enhanced prehospital volume therapy does not lead to improved outcomes in severely injured patients with severe traumatic brain injury. BMC emergency medicine. 2019 Jan 23;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of CNS-Pediatric. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for CNS-Pediatric, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in CNS-Pediatric, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of CNS-Pediatric. When it is time for the CNS-Pediatric board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study CNS-Pediatric.