Neuroanatomy, Lateral Corticospinal Tract


Article Author:
Kinaan Javed


Article Editor:
Forshing Lui


Editors In Chief:
Michael Labanowski


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Kyle Blair
Trevor Nezwek
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Daniyal Ameen
Altif Muneeb
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes
Komal Shaheen
Sandeep Sekhon


Updated:
11/26/2018 11:52:43 AM

Introduction

The human body is made of a complex system of ascending and descending pathways that permit communication between the brain and spinal cord. There are also pathways connecting different areas of the brain. These pathways are called white matter tracts in the central nervous system (CNS). These are all nerve fibers covered with myelin sheaths which are derived from oligodendrocytes. The corticospinal tract belongs to one of the most important descending tracts of the CNS. It contains fibers from the upper motor neurons to synapse on the lower motor neurons. Upper motor neurons (UMN) can be described as the nerve fibers responsible for the communication between the brain to the spinal cord. Lower motor neurons (LMN) are the nerve fibers responsible for the communication between the spinal cord to muscle. 

Although damage to both UMN and LMN result in muscle weakness, damage to upper motor neurons may result in increased reflexes, increased tone, (+) Babinski, and spastic paresis. On the other hand, damage to lower motor neurons is usually accompanied by muscle atrophy, fasciculations, and flaccid paralysis.

Descending tracts are responsible for relaying information from cortical regions to the periphery to initiate and modulate movement. The corticospinal tract is the largest descending tract present in humans and is divided into anterior and lateral components. The lateral corticospinal tract sends fibers predominantly to the extremity muscles, and the cortical innervation is contralateral, in other words, the left motor cortex controls the right extremities. The anterior corticospinal tract sends fibers mainly to the trunk or axial muscles. The control is both ipsilateral and contralateral. Therefore, trunk muscles are generally bilaterally cortically innervated.

Structure and Function

The lateral corticospinal tract contains over 90% of the fibers present in the corticospinal tract and runs the length of the spinal cord. The primary responsibility of the lateral corticospinal tract is to control the voluntary movement of contralateral limbs.[1] The origination of the Lateral corticospinal tract is in the primary motor cortex which lies in the precentral gyrus. When a stimulus is engaged, the cell body of the lateral corticospinal tract (in the primary motor cortex, the upper motor neuron) will send an impulse through the tract that will eventually travel to the anterior horn of the spinal cord from where it will transmit the impulse via lower motor neurons into the muscle fibers. This pathway can be scrutinized into greater detail.

When a motor act is planned and initiated by the premotor and supplemental motor cortex to the primary motor cortex in the precentral gyrus to move the leg, an impulse generated from the primary motor cortex will be conducted through the lateral corticospinal tract ipsilaterally through the corona radiata. It passes through the posterior limb of the internal capsule, through the cerebral peduncle and basis pontis, decussates at the caudal medulla (pyramidal decussation), and then continues to descend contralaterally into the spinal cord. Once that impulse reaches the cell body in the anterior horn (lower motor neuron) of the spinal cord, the motor fibers from the lower motor neurons will leave the spinal cord, proceed through the spinal nerve root, plexus, peripheral nerve, and finally to the neuromuscular junction where the impulse is transmitted to the muscle fibers resulting in contraction of that limb muscles. Damage to any of these structures may cause motor deficits.

Due to the pyramidal decussation of the lateral corticospinal tract in the caudal medulla, damage rostral or caudal to this decussation will be the defining feature of whether there will be ipsilateral or contralateral deficits. For example, if there is a lesion in the precentral gyrus of the left cerebral cortex, the patient will exhibit upper motor neuron signs with damage to the right side of the body. Contrarily, if there is spinal cord damage on the left side (below the pyramidal decussation), motor deficits will be present on the left side of the body. If there is spinal cord damage at the level of the anterior horn, then lower motor neurons signs will be present with ipsilateral deficits.

Blood Supply and Lymphatics

The lateral corticospinal tract is a very long structure. Damage to various vasculature may result in damage to the tract, depending on its location.

The primary motor cortex for the face and upper extremity receives its arterial supply from the middle cerebral artery (MCA). The primary motor cortex for the lower extremity receives its supply from the anterior cerebral artery (ACA). Damage to the lateral corticospinal tract here would result in contralateral motor deficits with UMN signs. An MCA occlusive lesion (stroke) will cause predominant face and arm weakness while an ACA occlusion will lead to lower extremity weakness. The corona radiata and internal capsule are supplied by the lenticulostriate arteries (branches of MCA). Occlusion of a lenticulostriate artery causing an ischemic infarction of the internal capsule (a lacunar infarct) will cause contralateral weakness of both the face, arm, and leg.[2] The lateral corticospinal tract through the brainstem except the caudal medulla is supplied mainly by the paramedian branches of the basilar artery. The caudal medulla receives vascular supply to its midline structures via the anterior spinal artery. The anterior spinal artery continues to run down the spinal cord, and damage to this artery may result in motor deficits related to the corticospinal tract.

Clinical Significance

The lateral corticospinal tract is affected in a variety of pathologies. This includes strokes, poliomyelitis, spinal muscular atrophy, amyotrophic lateral sclerosis, vitamin B12 deficiency, Friedreich ataxia, and Brown-Sequard syndrome.

Stroke

Any ischemic or hemorrhagic stroke affecting an area of the brain that contains the lateral corticospinal tract will cause contralateral weakness of the extremities. When the language area of the dominant hemisphere is involved, the patient will present with aphasia. When the orolingual regions of the cortex are involved, the patient will present with dysarthria. Hemiparesis and aphasia are important disabilities that are often persistent after a stroke, and it is the leading reason for stroke-related disability. Stroke is now the fifth leading cause of death in the United States and the leading cause of disability.

Damage of the upper motor neurons in the cerebral cortex leads to secondary axonal loss affecting the lateral corticospinal tract (Wallerian degeneration). Wallerian degeneration of the corticospinal tract can often be visualized in CT or MRI of the brain (see below).

Poliomyelitis

Although almost completely eradicated, poliomyelitis was a prevalent demonstration of damage to the lateral corticospinal tract. Poliovirus is a member of the Picornaviridae family and has fecal-oral transmission. Once transmitted, it replicates in the oropharynx and small intestine before spreading via the bloodstream to the CNS. In the CNS poliovirus causes the destruction of the cell bodies in the anterior horn of the spinal cord.[3] This results in ipsilateral LMN deficits such as muscle weakness/atrophy, fasciculations, hyporeflexia, and flaccid paralysis. Manifestations of this infection will begin in the legs and ascend until it reaches the respiratory muscles which would cause paralysis and death. Being a viral disease, the CSF will show lymphocytic pleocytosis (increased white blood cells [WBCs]), a slight increase in protein, and no change in glucose. Thanks to the inactivated polio vaccine, this deathly illness is no longer prevalent. In the United States, the commoner form of polio-like illness with similar pathophysiology is caused by other enteroviruses. The epidemics of acute flaccid myelitis caused by different strains of enteroviruses share the same pathophysiology.

Spinal Muscular Atrophy

Spinal muscular atrophy, also known as Werdnig-Hoffman disease in infants and Kugelberg-Welander disease in juveniles, is a congenital degeneration of the anterior horns of the spinal cord. Since this disease results in symmetric degeneration of the anterior horns, it results in symmetric weakness with lower motor neuron signs. Infants are characteristically described as "floppy babies" with associated tongue fasciculations. This disease carries an autosomal recessive inheritance with a mutation in the SMN1 gene.[4]

Amyotrophic Lateral Sclerosis

There is renewed awareness of ALS due to the 2014 social media "ice bucket challenge." Amyotrophic lateral sclerosis (ALS) can be caused by a defect in superoxide dismutase 1. Commonly known as Lou Gehrig disease, it displays both UMN and LMN deficits. Upper motor neuron deficits may include, dysphagia, dysarthria, spastic gait, and clonus. As a result of damage to the anterior horn of the spinal cord, lower motor neuron signs include weakness (dysphagia), fasciculations, and muscle atrophy. Patients experience such severe dysphagia that a common cause of death is aspiration pneumonia. This disease is classically associated with Stephen Hawking. Riluzole is a pharmaceutical treatment utilized for this condition.[5]

Vitamin B12 Deficiency 

Deficiency of vitamin B12 most commonly occurs due to malabsorption (Chron's disease, gastric bypass surgery), malnutrition (vegans), pernicious anemia, or rarely due to Diphyllobothrium latum (fish tapeworm). Most commonly, it occurs due to malabsorption rather than malnutrition because the human liver has stores of vitamin B12 that may last up to 3 to 5 years. Malabsorption versus malnutrition have historically been distinguished via the Schilling test. Diagnosis of B12 deficiency may be done by labs illustrating an increase in both methylmalonic acid and homocysteine. As homocysteine is also elevated in folate deficiency, it is important to test for methylmalonic acid levels to distinguish the 2. Neurologic manifestations of this condition cause subacute combined degeneration of the cord.[6] The term describes combined degeneration of the dorsal column and the lateral (corticospinal) tract. There is widespread demyelination of the spinocerebellar tracts, lateral corticospinal tracts, and the dorsal columns. The patient may experience symptoms such as paresthesias, ataxic gait (spinocerebellar), impaired proprioception (dorsal columns), and UMN motor weakness since the anterior horn is generally spared.

Friedreich Ataxia

An autosomal recessive trinucleotide repeat disorder, Friedreich ataxia is due to a GAA repeat on chromosome 9 resulting in a defect in the frataxin gene (iron-binding protein). Defects in the frataxin gene cause impairment in mitochondria.[7] Neurologic manifestations of this disease include degeneration of the lateral corticospinal tract (spastic paralysis), spinocerebellar tract (gait ataxia), dorsal columns (impaired proprioception), and dorsal root ganglia (loss of deep tendon reflexes). Young children often present with kyphoscoliosis and may have associated staggering gait, nystagmus, pes cavus, dysarthria, hammer toes, diabetes mellitus, and hypertrophic cardiomyopathy (COD).

Brown-Sequard Syndrome

Brown-Sequard syndrome is due to a hemisection of the spinal cord. A perfect example of a variety of co-existing deficiencies, it is worth mentioning due to the encompassing involvement of the lateral corticospinal tract. Patients symptoms may include:

  • Ipsilateral LMN signs (flaccid paralysis/fasciculations) at the level of the lesion due to damage of lateral corticospinal tracts
  • Ipsilateral UMN signs below the level of the lesion (spastic paralysis) due to lateral corticospinal tract damage
  • Ipsilateral loss of ALL sensation at the level of the lesion
  • Ipsilateral loss of proprioception and vibration below the lesion due to dorsal column damage
  • Contralateral loss of pain and temperature below the lesion due to damage to spinothalamic tract

Clinicians should note that if the lesion occurs above T1, the patient may present with Horner syndrome (miosis, ptosis, and anhidrosis) due to damage to the sympathetic chain.[8]


  • Image 7097 Not availableImage 7097 Not available
    Case courtesy of Dr Chris O'Donnell, Radiopaedia.org, rID: 20934
Attributed To: Case courtesy of Dr Chris O'Donnell, Radiopaedia.org, rID: 20934

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Neuroanatomy, Lateral Corticospinal Tract - Questions

Take a quiz of the questions on this article.

Take Quiz
Which spinal tract is involved in the crossing of the fibers of the corticospinal tract in the lower medulla?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 4-year-old male presents to the emergency department for difficulty with breathing. The patient’s family recently immigrated from Pakistan, and his mother does not remember his vaccination history. The mother states that the child has not been moving his right leg as much as his left leg recently. The mother admits that the patient feeds normally and does not have any family history of abnormal health conditions. What is the most likely cause of the patient's condition?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What tract is most responsible for voluntary movement?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 42-year-old female presents to the clinic with right-sided weakness. On physical examination, you confirm right-sided muscle weakness, a positive Babinski sign, and increased reflexes. Where is the damage most likely located?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 14-year-old male comes to the clinic complaining of trouble walking and muscle weakness. An obvious foot deformity is noted. A heart murmur that increases in intensity with Valsalva is heard on auscultation. When asking the patient to flex forward, you notice his right ribs protruding in the thoracic region. What is the most likely cause of this patient's condition?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What is the primary function of the lateral corticospinal tract?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Neuroanatomy, Lateral Corticospinal Tract - References

References

Fishman PS, Late-convalescent poliomyelitis. Corticospinal tract integrity. Archives of neurology. 1987 Jan     [PubMed]
Walter MC,Stauber AJ, [Spinal muscular atrophy - clinical spectrum and therapy]. Fortschritte der Neurologie-Psychiatrie. 2018 Sep     [PubMed]
Bissaro M,Federico S,Salmaso V,Sturlese M,Spalluto G,Moro S, Targeting protein kinase CK1δ with Riluzole: could it be one of the possible missing bricks to interpret its effect in the treatment of ALS from a molecular point of view? ChemMedChem. 2018 Oct 25     [PubMed]
Kraskov A,Baker S,Soteropoulos D,Kirkwood P,Lemon R, The Corticospinal Discrepancy: Where are all the Slow Pyramidal Tract Neurons? Cerebral cortex (New York, N.Y. : 1991). 2018 Oct 25     [PubMed]
Sato S,Dan M,Hata H,Miyasaka K,Hanihara M,Shibahara I,Inoue Y,Kumabe T, Safe Stereotactic Biopsy for Basal Ganglia Lesions: Avoiding Injury to the Basal Perforating Arteries. Stereotactic and functional neurosurgery. 2018     [PubMed]
Natera-Villalba E,Estévez-Fraga C,Sánchez-Herrera FA,Ruiz-Gómez F,Sanz BZ,Cánovas AA,Martínez-Castrillo JC,Corral ÍC, Simultaneous acute presentation of generalized chorea and subacute combined degeneration secondary to vitamin B12 deficiency. Parkinsonism     [PubMed]
Rota S,Marchina E,Todeschini A,Nanetti L,Rinaldi F,Vanotti A,Mariotti C,Padovani A,Filosto M, Very late-onset friedreich ataxia with laryngeal dystonia. Case reports in neurology. 2014 Sep-Dec     [PubMed]
Zeng Y,Ren H,Wan J,Lu J,Zhong F,Deng S, Cervical disc herniation causing Brown-Sequard syndrome: Case report and review of literature (CARE-compliant). Medicine. 2018 Sep     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Clinical Neurology-Medical Student. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Clinical Neurology-Medical Student, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Clinical Neurology-Medical Student, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Clinical Neurology-Medical Student. When it is time for the Clinical Neurology-Medical Student board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Clinical Neurology-Medical Student.