Hypopituitarism (Panhypopituitarism)


Article Author:
Verena Gounden


Article Editor:
Ishwarlal Jialal


Editors In Chief:
Michael Labanowski


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Frank Smeeks
Kristina Soman-Faulkner
Radia Jamil
Patrick Le
Sobhan Daneshfar
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Pritesh Sheth
Hassam Zulfiqar
Navid Mahabadi
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
2/19/2019 4:22:08 PM

Introduction

The pituitary gland is responsible for the production and secretion of various hormones that play a vital role in regulating endocrine function within the body. The pituitary gland consists of an anterior and a posterior lobe. Hormones produced by the anterior lobe of the pituitary gland include growth hormone (GH), thyroid-stimulating hormone (TSH), luteinizing hormone (LH), follicular-stimulating hormone (FSH), adrenocorticotropin (ACTH), and prolactin (PRL). Hormones stored and released from the posterior pituitary are antidiuretic hormone (ADH)/vasopressin and oxytocin. ADH and oxytocin are produced by neurosecretory cells in the hypothalamus. Trophic hormones produced by the hypothalamus stimulate or inhibit production of different anterior pituitary hormones which then effect target organs. See Table 1 (Anterior Pituitary Hormones).

Hypopituitarism is defined as a deficiency of one or more of the hormones produced by the pituitary gland. The presence of hypopituitarism is associated with increased mortality due to increased cardiovascular and respiratory diseases, and early diagnosis is important to prevent further morbidity due to the subtle presentation.[1][2][3]

Etiology

The causes of hypopituitarism can be attributed to either pathology of the hypothalamus affecting the production of trophic hormones that act on the pituitary or direct pathology of the pituitary gland itself. The most common cause of hypopituitarism (61%) is the presence of pituitary tumors (both non-secretory and secretory). Pituitary tumors may cause the increased production of one hormone with resultant deficiency of the other pituitary hormones as in acromegaly (excess GH with hypopituitarism from the macroadenoma). Most pituitary tumors are benign and may be secretory or non-secretory. Secondary metastases originating from, for example, breast, colon and prostate cancers do occur less commonly. Hypothalamic and para-pituitary tumors such as suprasellar meningiomas, gliomas and craniopharyngiomas may also be associated with hypopituitarism.  Other causes of hypopituitarism include injury to the pituitary gland following traumatic brain injury or iatrogenically during surgery or cranial irradiation.

Inflammatory conditions of the pituitary may also be responsible for the occurrence of hypopituitarism. The infectious agents that can have been related to pituitary insufficiency include Mycobacterium tuberculosis and non-mycobacterial agents such as histoplasmosis, syphilis, viruses, and protozoa. Lymphocytic hypophysitis usually presents in the post-partum period as a mass lesion on magnetic resonance imaging (MRI)  due to infiltration of the pituitary with lymphocytes and plasma cells and is responsive to steroid therapy.

Infiltrative diseases such as hemochromatosis, sarcoidosis, and histiocytosis may be associated with the development of hypopituitarism.

Pituitary apoplexy is a medical emergency and is due to acute ischaemic infarction or hemorrhage of the pituitary gland. Pituitary apoplexy may occur in the presence of a pituitary adenoma but may also occur in the normal pituitary gland. Sheehan syndrome refers to infarction of the hyperplastic pituitary gland during pregnancy due to severe blood loss (post-partum hemorrhage). Because of the rich and complex vascular supply pituitary adenomas have an increased risk of bleeding when compared to other brain tumors.

Congenital absence of the pituitary gland is related to midline and craniofacial defects. Genetic mutations in transcription factors such as  HESX1, PROP1, and Pit-1 can lead to congenital hypopituitarism. Empty Sella syndrome is a rare disorder which is characterized by enlargement or malformation of the sella turcica resulting in a herniation of the arachnoid membrane into the pituitary fossa dislodging the pituitary to the floor of the fossa. It is associated with a small or absent pituitary gland. Empty Sella syndrome may be idiopathic or occur secondarily to a treated pituitary tumor, head trauma, or a condition known as idiopathic intracranial hypertension (pseudotumor cerebri). Kallmann syndrome is a rare genetic condition associated with an inability to smell (hyposmia/anosmia) and hypogonadotropic hypogonadism (decreased FSH decreased LH, and decreased testosterone/estradiol) due to a mutation in the Kal1 gene as the commonest genetic abnormality in males.

Epidemiology

There is limited data available regarding the incidence and prevalence of hypopituitarism. One study from Spain reported the annual incidence of anterior pituitary hormone deficiency to be 4.21 cases per 100,000 population.

History and Physical

It appears that that 75% of the pituitary needs to be damaged to result in hypopituitarism. Clinical features of hypopituitarism may be subtle and ill-defined or severe with the acute presentation. Conditions such as Sheehan’s syndrome/pituitary apoplexy, pituitary infection, hypophysitis and traumatic brain injury present with acute findings.  [4][5][6]

Presenting signs and symptoms may be linked to that of a deficiency of pituitary hormone, mass effects in the presence of pituitary tumors, and/or features of the causative disease. Mass effects include visual field defects known as bitemporal hemianopsia. Visual field defects may also occur unilaterally. Patients may also present with headaches, secondary to the mass lesions. See table 2  below. It summarises the clinical features of pituitary hormone deficiencies.

Evaluation

The presence of a secretory pituitary tumor may result in features of hormone excess for the particular hormone produced by a tumor while other pituitary hormones may be deficient.[7][8][9][10]

Investigations

Laboratory investigations: Initial testing involves baseline levels of pituitary hormones and hormones produced by target hormones. Due to the variation of hormone levels related to the time of day, season and pulsatile secretion of certain pituitary hormones, baseline levels may not be helpful. In this instance, dynamic function testing may be performed to confirm biochemical deficiency or excess of a particular pituitary hormone. In dynamic function testing for the investigation of a hormone deficiency a stimulatory agent that would normally increase secretion of the hormone is given to the patient and blood levels are measured before administration of the agent and at defined time points after that to determine if there has been an adequate response to stimulation. See Table 3 Lab findings for pituitary hormone deficiency (per specific hormone).

Insulin Tolerance Test: This is the best provocative test that is used to assess the presence of the deficiency of both GH and cortisol. Following an overnight fast,  baseline samples are obtained for the following hormones cortisol, GH, and glucose. An insulin dose of 0.1 U/kg or 0.05 U/kg is administered intravenously (IV). Further samples for analysis of the hormones measured in the baseline samples are then taken at several other time points after administration. Should not be performed in those with cardiac disease or epilepsy. The plasma glucose should fall to 40 mg /dl within 30 to 45 minutes or by 50% of baseline. The test is terminated by giving IV dextrose and assessing the patient's status for at least 90 minutes. A normal/adequate response is indicated by a cortisol of more than 20 ug/dL and GH more than 5 ng/mL to 10 ng/mL.

Modern combined test: Patient is given GHRH, CRH, GnRH, and TRH as the provocative stimuli and GH, TSH, ACTH, Cortisol, LH, and FSH are measured at baseline and at specified time intervals after that. Doses of each stimulating hormone are as follows GHRH (1.0 ug/kg); CRH (1.0 ug/Kg); GnRH (100 ug) and TRH (200 ug). However, this testing is rarely required.

Radiological investigations: Imaging studies of the pituitary using magnetic resonance imaging (MRI) with gadolinium enhancement be used to visualize the pituitary, in particular, to detect the presence of a mass lesion. Visual field defects need to be assessed if a pituitary mass is the cause of the hypopituitarism.

Treatment / Management

Management is dependent on the cause of hypopituitarism. Initial treatment is to address the underlying cause of hypopituitarism. Mass lesions may be removed surgically and other medical conditions treated accordingly. Many patients may require hormone replacement therapy.

ACTH deficit: Corticosteroid replacement should be initiated before replacement of thyroid hormone to avoid precipitating an adrenal crisis. Hydrocortisone at a dose of 10 mg to 20 mg in the morning and 5 mg to 10 mg in the evening. Prednisone may also be used.

Increased dosages of corticosteroids are given during periods of stress and during surgery and in pregnancy

TSH deficit: Thyroid hormone (L-thyroxine) replacement, in particular for the elderly and those with the cardiac disease It is important to start with a low dose of 25 ug/daily and the up-titrate as required regarding biochemical findings and clinical signs and symptoms.

FSH/LH deficit: In secondary hypogonadism, testosterone can be delivered by gel, patch, or intramuscular (IM) injections every 2 weeks with a careful monitoring of prostate-specific antigen (PSA) and  Testosterone levels.

In women: estrogen/progesterone hormone replacement therapy via oral, intramuscular or transdermal routes can be given.

If fertility is desired, then one starts off with human chorionic gonadotropin (HCG) to augment testosterone levels and improve semen quality. If this is not successful after a 1-year, consider human menopausal gonadotropin (HMG)/recombinant FSH concomitant therapy to enhance fertility further

Growth hormone deficit: Unlike in children with short stature due to GH deficiency, the role of GH replacement in the treatment of adult GH deficiency has not been well established. Synthetic growth hormone replacement is used for somatotrophin. Replacement therapy is titrated against IGF1 levels. The goal of treatment is to ensure that adult height is obtained. Further evaluation is made post-puberty to determine whether GH replacement should continue into adulthood.

ADH deficit: Replacement of ADH with intranasal desmopressin (synthetic vasopressin) helps stabilize water balance and polyuria.

Enhancing Healthcare Team Outcomes

The diagnosis and management of hypopituitarism is done with a multidisciplinary team that consists of a neurosurgeon, endocrinologist, pathologist, radiologist, primary care provider, nurse practitioner, and an ophthalmologist.  Management is dependent on the cause of hypopituitarism. Initial treatment is to address the underlying cause of hypopituitarism. Mass lesions may be removed surgically and other medical conditions treated accordingly. Many patients may require hormone replacement therapy. The outcome in most patients with hypopituitarism are good but those who have a neurological deficit but continue to have partial deficits even after treatment. [1][11][12](Level V)


  • Image 5848 Not availableImage 5848 Not available
    Contributed by Verena Gounden
Attributed To: Contributed by Verena Gounden

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Hypopituitarism (Panhypopituitarism) - Questions

Take a quiz of the questions on this article.

Take Quiz
In which of the following brain disorders may one see hypercholesterolemia?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
After surgical removal of the anterior pituitary gland, supplements of which hormone are not required?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A patient complains of headaches for 6 months occurring once a month. She denies nausea, vomiting, visual changes, or awakening secondary to the headaches. She is convinced she has a brain tumor so an MRI is ordered. It shows an empty sella. Select appropriate management.



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 32-year-old male who is married complains that they are having difficulty in conceiving. He admits to an impairment in smell. On examination, he has a eunuchoid habitus, blood pressure of 110/65 mmHg, small testes, and decreased pubic hair. Preliminary investigations reveal low levels of testosterone, luteinizing hormone, follicle stimulating hormone, and normal glucose, IGF-1, and prolactin levels and normal 24-hour urine free cortisol. What is the most likely diagnosis?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 7-year-old boy is brought in by his mother. She complains that he is drinking excessive amounts of water and going to the toilet with increased frequency. Of note on clinical history is that the boy had had previous cranial radiation due to a malignant tumor. His urine dipstick is negative for glucose, and his calcium results are 2.3 mmol/l ( 2.15- 2.55 mmol/L) and potassium result is 4 mmol/L ( 3.5-5.3 ), his serum sodium result is 148 mmol/L ( 135-145) and serum osmolality is 300 mosm/kg (285- 295). What further testing should be advised?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 55-year-old male presented with nausea and fatigue. Initial blood tests suggested hypopituitarism with low serum cortisol (<40 nmol/L) and accompanying low ACTH, low free T4 7.9 pmol/L (reference range 11.5-22) pmol/L) and inappropriately normal TSH (1.4 mU/L reference range 0.35-5.3 mU/L). Gonadotrophins were inappropriately low for a post-menopausal woman. CT scan was normal. Iron studies performed showed an increase iron saturation of 65% (30% to 50%) with a raised ferritin and liver function tests showed mildly increased transaminases and fasting blood glucose was 155 mg/dl ( normal < 108 mg/dL). What is the most likely cause of hypopituitarism?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Hypopituitarism (Panhypopituitarism) - References

References

Sun S,Liu A,Zhang Y, Long-Term Follow-Up Studies of Gamma Knife Radiosurgery for Postsurgical Nonfunctioning Pituitary Adenomas. World neurosurgery. 2019 Jan 17;     [PubMed]
Thompson CJ,Costello RW,Crowley RK, Management of hypothalamic disease in patients with craniopharyngioma. Clinical endocrinology. 2019 Jan 4;     [PubMed]
Qiao N, Excess mortality after craniopharyngioma treatment: are we making progress? Endocrine. 2018 Dec 19;     [PubMed]
Abdelmannan D,Aron DC, Incidentally discovered pituitary masses: pituitary incidentalomas. Expert review of endocrinology     [PubMed]
Arnaldi G,Cardinaletti M,Trementino L,Tirabassi G,Boscaro M, Pituitary-directed medical treatment of Cushing's disease. Expert review of endocrinology     [PubMed]
Healy ML,Smith TPP,McKenna TJ, Diagnosis, misdiagnosis and management of hyperprolactinemia. Expert review of endocrinology     [PubMed]
Lamas C,García-Martínez A,Cámara R,Fajardo-Montanana C,Viguera L,Aranda I, Silent somatotropinomas. Minerva endocrinologica. 2018 Dec 7;     [PubMed]
Tan CL,Hutchinson PJ, A neurosurgical approach to traumatic brain injury and post-traumatic hypopituitarism. Pituitary. 2018 Nov 27;     [PubMed]
Bernabeu I,Aller J,Álvarez-Escolá C,Fajardo-Montañana C,Gálvez-Moreno Á,Guillín-Amarelle C,Sesmilo G, Criteria for diagnosis and postoperative control of acromegaly, and screening and management of its comorbidities: Expert consensus. Endocrinologia, diabetes y nutricion. 2018 May;     [PubMed]
Delgado-López PD,Pi-Barrio J,Dueñas-Polo MT,Pascual-Llorente M,Gordón-Bolaños MC, Recurrent non-functioning pituitary adenomas: a review on the new pathological classification, management guidelines and treatment options. Clinical     [PubMed]
Zhibin Z,Peng W,Shiyu F,Xinguang Y, Endocrinological outcomes of intraoperative MRI-guided endoscopic transsphenoidal surgery for non-functioning pituitary adenoma. Turkish neurosurgery. 2018 Jun 27;     [PubMed]
Jamshidi AO,Beer-Furlan A,Prevedello DM,Sahyouni R,Elzoghby MA,Safain MG,Carrau RL,Jane JA,Laws ER, A modern series of subdiaphragmatic craniopharyngiomas. Journal of neurosurgery. 2018 Oct 1;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Clinical Neurology-Medical Student. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Clinical Neurology-Medical Student, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Clinical Neurology-Medical Student, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Clinical Neurology-Medical Student. When it is time for the Clinical Neurology-Medical Student board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Clinical Neurology-Medical Student.