Glycogen Storage Disease Type II (Pompe Disease)


Article Author:
Jose Morales


Article Editor:
Arayamparambil Anilkumar


Editors In Chief:
Michael Labanowski


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Kyle Blair
Trevor Nezwek
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Daniyal Ameen
Altif Muneeb
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes
Komal Shaheen
Sandeep Sekhon


Updated:
4/2/2019 9:07:45 PM

Introduction

Glycogen storage disease type II (GSD2, Pompe Disease) is a recessive metabolic disorder, creating glycogen deposits inside lysosomes within the muscular tissue[1].

This disease is either classified as early (infantile, classic) or late onset (non-classic). Early onset has a severe presentation and is likely to feature a fatal outcome, should prompt treatment not be available. A common cause of lethality for both onsets is respiratory insufficiency, which manifests at different ages in late onset. Another important cause of lethality in infantile-onset is left ventricular outflow obstruction.

Preventive treatment consists of enzyme replacement therapy (alglucosidase alfa)[2], maintaining an updated immunization schedule, and respiratory syncytial virus (RSV) prophylaxis. Adults developing signs of respiratory insufficiency can benefit from respiratory exercises or assisted mechanical ventilation, which may also be convenient for children).

Etiology

The GAA gene on chromosome 17q25.3 synthesizes acid alfa-Glucosidase, which is a lysosomal enzyme catalyzing alpha 1,4 and alpha 1,6 linkages of lysosomal glycogen. Mutations in such a gene inherited in an autosomal recessive fashion, lead to unstable mRNA translating into a deficient or null product.

Epidemiology

Incidence varies according to ethnicity and region; it is estimated to be 1:40,000 for the US[1], with 1:14,000 for African Americans. The numbers mentioned above include all GSD2 forms.

Certain populations could also have a particular mutation associated with their ethnic group. For example, p.Asp654Glu is mainly present in Taiwanese and Chinese patients; while p.Arg854Ter is present in individuals of African descent[3].

Pathophysiology

Although a precise mechanism has not been described, lysosomal glycogen accumulation leads to impairment of striated muscular cells[1]. Initially, affected areas involve active voluntary muscles (extremities), progressing to cardiac muscle, and lastly the diaphragm.

History and Physical

Two phenotypes have been described, early (infantile, classic) and late (non-classic) onset[3].

Early onset is characterized by exhibiting symptoms before the age of 1[1]. Common problems are hypotonia/muscle weakness with subsequent motor delay (96%), cardiomegaly (92%, commonly hypertrophic cardiomyopathy)[1], hepatomegaly (90%), macroglossia (62%), poor feeding/failure to thrive (53% to 57%), respiratory infections or dyspnea leading to respiratory failure, which is the most common cause of death in this disease[4]. It has also been associated with hearing loss.

Late-onset patients commonly exhibit symptoms in childhood or beyond in a variable manner, though usually as proximal muscle weakness. Symptom progression is slower but ultimately leads to lower limb weakness and respiratory failure due to diaphragm affection[5]. It is not common to find cardiac involvement. However, a small group of adults has presented with signs of arterial problems. A clue for diagnosing this illness in adolescents or adults would be a history of "clumsiness" while performing physical activities.

Evaluation

For early onset in areas where newborn screening is not available (see below), creatine kinase (CK) serum and urinary oligosaccharides can be the first step[4].

An acid alpha-glucosidase enzyme assay can be performed in whole or dried blood[6][7]. However, the standard gold test is enzyme analysis from cultured fibroblasts or muscle[5][7][5], which could have an important setback, since it requires a longer time for result delivery. It is estimated that residual levels below 1% of activity are linked to infant onset, while residual levels above 2% to 40% are linked with late-onset. However, discrimination must be taken into account, since cultured fibroblast methodology is more accurate of the two.

Acid alpha-glucosidase (GAA) gene sequencing confirms the diagnosis[4][7][4]. A thoughtful process for ordering the test should be taken into account since there are populations (see above) who would benefit from targeted gene sequence analysis rather than complete sequence analysis with deletion/duplication.

Due to the variant and often misleading nature of the late-onset phenotype, mimicking or sometimes overlapping with other muscular disorders, initial testing includes EMG, nerved conduction studies (results are normal for motor and sensory pathways); and muscle biopsy[7] with PAS staining in search for lysosomal glycogen accumulation. 

Treatment / Management

Following diagnosis, initial workup should consist of chest radiography, electrocardiography, an echocardiogram to evaluate cardiac status in the early onset type.

Reduction of vital capacity can be assessed in late-onset, which is a difficult approach with infants since the procedure requires instruction compliance. For all onsets, a prompt response should be provided to patients who develop a cough, wheezing, shortness of breath[3].

For feeding, difficulties consider an orogastric or nasogastric tube, as well as video swallow studies (late onset) to prevent aspiration and/or gastroesophageal reflux.

Enzyme replacement therapy (ERT) is currently the most reliable treatment. By providing an analogous enzyme, lysosomal glycogen accumulation in cardiac and skeletal muscle is actively reduced, though diagnosis timing is the main determinant factor for treatment response. CRIM (cross-reactive immunologic material) status is to be determined either prior or during the first administrations of ERT. CRIM testing is important since patients who develop antibodies against the enzyme provided can have a reduced effect. Different protocols have been created to reduce this response, which can consist of antihistamines, steroids, and other immunomodulators. Dosing for ERT in its commercial forms, ranging from 20 to 40 mg/kg/dose every 2 weeks[2].

Treatment of the different complications should be tailored particularly to each case. Cardiac affected patients should avoid digoxin, inotropes initially since they can worsen left ventricular outflow status. Muscle weakness is greatly benefited from physical therapy, mainly to avoid contractures of the pelvic girdle which can require surgical management. Speech and swallow therapy, CPAP and BiPAP are often required in patients with the late-onset phenotype.

Differential Diagnosis

The differential diagnosis of Early Onset includes (differences are written in parenthesis): Spinal Muscular Atrophy 1 (no cardiac involvement), Danon Disease (X-linked inherited)[3].

For Late Onset: Limb-Girdle Muscular Dystrophy (no affection of axial muscles), Duchenne-Becker Muscular Dystrophy (X-linked inherited). Other Glycogen Storage Disorders can be considered, however main difference consists of lack of hypoglycemia in GSD2. 

Pearls and Other Issues

Newborn Screening

Few countries have adopted this preventive method. Within the United States, it is not universally performed, but steps are being taken to do so. The technique consists of enzyme analysis on dried blood spots through mass spectrometry. Reasoning to perform it universally is that, while diagnosed early, it can improve the prognosis dramatically. This is particularly true in early-onset where cardiac and motor development present remarkable positive results when ERT is administered within the first two weeks of life. Respiratory support is not as needed with patients who receive ERT prior to six months of age. Nonetheless, patients with particular muscle fiber resistance to therapy, antibodies against ERT, or CRIM negativity will prove to be on the poor prognostic side.

Patients with late-onset have a better prognosis overall, with their main factors being muscle weakness and respiratory insufficiency. On ERT, patients showed an optimal response along with increased quality of life.

In both groups, no long-term studies have been performed, given the relative novelty of ERT.

Patients who will be in stressful situations, like pregnancy or surgery, should be monitored closely with cardiac and respiratory surveillance.

Novel therapies are underway, with adenovirus-based gene therapy being one of the most recent ones to improve the respiratory status and reduce the need for ventilatory assistance[8].

Enhancing Healthcare Team Outcomes

Glycogen storage disease are very rare. All members of the interprofessional team including nurses and clinicians need to be aware of the signs and symptoms and report their findings to the team. Early diagnosis and treatment will result in the best outcome. [Level V]

 


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Glycogen Storage Disease Type II (Pompe Disease) - Questions

Take a quiz of the questions on this article.

Take Quiz
A 4-month-old female is referred for echocardiogram follow-up. The patient is not able to hold her head and is hypotonic overall. On evaluation, there is hepatomegaly, with marked muscle hypotonia and macroglossia. Her echocardiogram reveals hypertrophic cardiomyopathy. Before referral, her primary care physician performed a muscle biopsy revealing glycogen accumulation. What is the likely diagnosis?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 6-month-old male is brought to the office by his parents due to recurrent upper respiratory infections. The parents comment that the patient has had this problem since birth, they also add patient has not been developing as their two previous children. On physical examination, there is hypotonia, macroglossia, and a systolic III/VI murmur located on the left lower sternal border. Two previous affected siblings had a fatal outcome. What enzymes is most likely deficient in this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 14-year-old male comes to his first visit to after relocating. When the patient comes in, he has a waddling gait, with marked lumbar lordosis. He then stumbles and falls. While helping him to stand, hypotonia and hypotrophy of extremities are noted. On further questioning of the mother, she states patient has had this problem since age 1 and after a thorough evaluation by his physician on his previous hometown, no diagnosis was given. There are no previous medical records available. On physical exam, deep tendon reflexes are 2+/4, muscular strength 2/5 at all extremities, and Gower sign positive with slight hypertrophy of calf muscles. Serum CK is 200 units/L (normal 38-174 units/L). On further questioning, the mother reveals one older sibling has been complaining of weakness since she was a teenager, with no other symptoms. What enzyme is most likely affected in this patient?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What disease results in accumulation of glycogen?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 6-month-old female has been diagnosed with glycogen storage disease type 2. This is the first child for the couple. The parents are concerned about prognosis and potential complications. Given the early presentation and presence of a III/VI systolic murmur, an echocardiogram is ordered. What is the echocardiogram likely to reveal?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Glycogen Storage Disease Type II (Pompe Disease) - References

References

A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease., Kishnani PS,Hwu WL,Mandel H,Nicolino M,Yong F,Corzo D,, The Journal of pediatrics, 2006 May     [PubMed]
Juvenile and adult-onset acid maltase deficiency in France: genotype-phenotype correlation., Laforêt P,Nicolino M,Eymard PB,Puech JP,Caillaud C,Poenaru L,Fardeau M,, Neurology, 2000 Oct 24     [PubMed]
Methods for a prompt and reliable laboratory diagnosis of Pompe disease: report from an international consensus meeting., Winchester B,Bali D,Bodamer OA,Caillaud C,Christensen E,Cooper A,Cupler E,Deschauer M,Fumić K,Jackson M,Kishnani P,Lacerda L,Ledvinová J,Lugowska A,Lukacs Z,Maire I,Mandel H,Mengel E,Müller-Felber W,Piraud M,Reuser A,Rupar T,Sinigerska I,Szlago M,Verheijen F,van Diggelen OP,Wuyts B,Zakharova E,Keutzer J,, Molecular genetics and metabolism, 2008 Mar     [PubMed]
The natural course of infantile Pompe's disease: 20 original cases compared with 133 cases from the literature., van den Hout HM,Hop W,van Diggelen OP,Smeitink JA,Smit GP,Poll-The BT,Bakker HD,Loonen MC,de Klerk JB,Reuser AJ,van der Ploeg AT,, Pediatrics, 2003 Aug     [PubMed]
The natural course of non-classic Pompe's disease; a review of 225 published cases., Winkel LP,Hagemans ML,van Doorn PA,Loonen MC,Hop WJ,Reuser AJ,van der Ploeg AT,, Journal of neurology, 2005 Aug     [PubMed]
Kishnani PS,Corzo D,Leslie ND,Gruskin D,Van der Ploeg A,Clancy JP,Parini R,Morin G,Beck M,Bauer MS,Jokic M,Tsai CE,Tsai BW,Morgan C,O'Meara T,Richards S,Tsao EC,Mandel H, Early treatment with alglucosidase alpha prolongs long-term survival of infants with Pompe disease. Pediatric research. 2009 Sep     [PubMed]
Kishnani PS,Steiner RD,Bali D,Berger K,Byrne BJ,Case LE,Crowley JF,Downs S,Howell RR,Kravitz RM,Mackey J,Marsden D,Martins AM,Millington DS,Nicolino M,O'Grady G,Patterson MC,Rapoport DM,Slonim A,Spencer CT,Tifft CJ,Watson MS, Pompe disease diagnosis and management guideline. Genetics in medicine : official journal of the American College of Medical Genetics. 2006 May     [PubMed]
Smith BK,Martin AD,Lawson LA,Vernot V,Marcus J,Islam S,Shafi N,Corti M,Collins SW,Byrne BJ, Inspiratory muscle conditioning exercise and diaphragm gene therapy in Pompe disease: Clinical evidence of respiratory plasticity. Experimental neurology. 2017 Jan     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Clinical Neurology-Medical Student. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Clinical Neurology-Medical Student, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Clinical Neurology-Medical Student, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Clinical Neurology-Medical Student. When it is time for the Clinical Neurology-Medical Student board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Clinical Neurology-Medical Student.