Hyperbaric Complications


Article Author:
Roxanna Sadri


Article Editor:
Jeffrey Cooper


Editors In Chief:
Jeffrey Cooper


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Trevor Nezwek
Radia Jamil
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Steve Bhimji
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Nazia Sadiq
Hajira Basit
Phillip Hynes
Tehmina Warsi


Updated:
5/29/2019 11:17:14 PM

Introduction

Hyperbaric oxygen therapy (HBOT) is generally a relatively safe therapy for various conditions. However, there are some adverse side effects. When adverse, side-effect data was collected from 2009 through 2010 on patients treated in monoplace chambers, it showed side-effect rates estimated around 0.4%. About half of all adverse events fall under the category of "ear pain" and a quarter are classified as "confinement anxiety."

When examining the complications of hyperbaric oxygen treatment, there are two categories: side effects of pressure and side effects of oxygen. The side effect of pressure is barotrauma, which can affect any closed, air-filled cavity (including but not limited to ears, sinus, teeth, lungs, and bowel). The side effects of oxygen can further be subdivided into three categories: pulmonary, neurologic, and ophthalmologic. Confinement anxiety is more an effect of the physical space of the chamber and not a true complication.[1][2][3]

Issues of Concern

Effects of Pressure

Barotrauma can best be understood by understanding Boyle's Law - P1V1 = P2V2. That is to say, that as pressure increases, volume decreases, and as pressure decreases volume increases. On pressurization of a hyperbaric chamber or "descent," gas-filled spaces contract, requiring equalization. Barotrauma results from an inability to equalize pressure between the environment and the air-filled space in the body, resulting in a “squeeze.”

The most common type of barotrauma involves the middle ear and can cause a range of issues from mild hyperemia of the tympanic membrane (TM) to actual rupture of the TM. These are graded by TEED classifications, from TEED 0 (symptom only, normal exam) to TEED 5 (rupture of TM). For patients who are unable to equalize, either from poor technique or for those who are intubated and sedated, there may be the need for myringotomy before treatment.[4][5][6][7]

Air flows freely in and out of the sinuses. However, air-trapping can happen. Usually, air trapping in the sinuses is secondary to a mechanical obstruction, such as polyps or inflammation. Sinus barotrauma tends to result in sinus pain and swelling, however more significant sequelae reported include cranial nerve symptoms. A tooth "squeeze," resulting from an air pocket in the tooth, either from dental decay or a filling, can be quite painful. On depressurization of the hyperbaric chamber or "ascent," gas expands. In the middle ear, that presents with the feeling of pressure on the tympanic membranes. Usually, the expanded air exits through the eustation tubes; however, if there is significant eustation tube swelling from barotrauma on descent or a misinformed patient who is doing a forceful Valsalva on the ascent, there can be trauma to the TM or the round or oval window of the inner ear.

Air trapping in the lungs or anything that leads to pulmonary over-pressurization including breath holding on depressurization, severe bronchospasm, or a closed glottis from cough fit or seizure can lead to alveolar rupture. The resulting complication depends on where the escaped air dissects to, whether the mediastinum (pneumomediastinum), the visceral pleura (pneumothorax), or the vasculature (arterial gas embolism). These complications are incredibly rare but can be quite serious, particularly if not recognized.

Finally, special consideration needs to be given to any implanted devices a patient may have, as not all are pressure tested. This includes pacemakers, defibrillators, LVADs, among others. In addition, external breast prosthesis, or orbital prosthesis can be affected or damaged. 

Oxygen Toxicity

Oxygen, at high pressures, is a drug. Pulmonary oxygen toxicity is thought to arise from the duration of oxygen exposure and occurs more quickly at higher pressures. It presents as tracheobronchitis, which starts centrally and spreads along the “tracheobronchial tree.” At the mild end of the spectrum, it presents as a cough, can progress to substernal burning, and at the most severe case, involve dyspnea at exertion or rest. The latter is a rare complication and often resolves over several days.[8][9]

In contrast, neurologic effects of oxygen toxicity have more to do with an acutely high partial pressure of oxygen (e.g., a high dose of oxygen) and can be remembered by the acronym, VENTID. This stands for vision (tunnel vision), ears (tinnitus), nausea, twitching (muscle fasciculation), irritability, and dizziness. Also, the most concerning neurologic symptom of neurologic oxygen toxicity is a generalized tonic-clonic seizure. The incidence of these is dose-dependent, overall between 1:5,000 to 1:10,000 treatments and is more common in individuals with lower seizure thresholds (heavy alcohol users, or individuals with epilepsy or diabetes). Fortunately, oxygen toxicity seizures usually stop without the need for medication or intervention, once the patient is breathing air.

Ophthalmologic complications of hyperbaric oxygen therapy are (1) retinopathy of prematurity, (2) cataract formation, and (3) transient myopic change in vision. Retinopathy of prematurity (ROP) is specifically a risk only for neonates and can result in permanent blindness. Exceptional care should be taken in considering risks and benefits in treated premature infants, with explicit discussion regarding ROP with the parents/guardians. Cataract formation tends to occur only after many hyperbaric treatments (one study showing de novo cataract formation starting after 150 daily treatments), so this does not tend to be an issue for patients who receive the standard between 20 and 60 treatments. However, this should be considered, and the patient should be advised when they receive multiple courses of treatments.

The most common ocular complication of hyperbaric oxygen therapy is myopic change. Traditionally, transient myopic change has been thought to be due to the increased refractive index of the lens. However, the mechanism is still debated. It is thought to be fully reversible after the cessation of hyperbaric oxygen therapy, with the vision rapidly improving after 3 to 6 weeks, however, fully returning to baseline can take as long as 1 year.

Clinical Significance

Hyperbaric oxygen therapy is a relatively safe modality of treatment for various medical conditions which often do not have other effective treatments. However, there are some risks and complications that patients must be made aware of before initiation of HBOT.  While most common complications are relatively benign, such as ear and sinus barotrauma, claustrophobia, and transient myopic change, there do exist serious complications as well. As with all medical therapies to be offered to patients, education of risks and informed consent is key.

Enhancing Healthcare Team Outcomes

HBO therapy is useful for the management of several chronic disorders including carbon monoxide poisoning. However, healthcare workers including the nurse and clinicians must educate the patient on the potential complications of this therapy. While most complications are benign, transient visual changes may occur.


Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Hyperbaric Complications - Questions

Take a quiz of the questions on this article.

Take Quiz
What is the most common complication of hyperbaric oxygen therapy?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
What can be caused by prolonged exposure to high concentrations of oxygen?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 75-year-old male with diabetes mellitus has started daily hyperbaric treatment at 2.4 ATA for radiation cystitis. After the fourth treatment, he reports to you that he is having blurring of his vision in his left eye. He asks you to liaise with his ophthalmologist. What do you tell them?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 76-year-old male with a history of severe chronic obstructive pulmonary disease, diabetes mellitus type 2, and ischemic heart disease is being treated with hyperbaric oxygen therapy for radiation cystitis. On ascent, he slumps forward and become unresponsive. The chamber is brought to the surface, and the patient is in cardiac arrest. In addition to standard care, what complication of hyperbaric oxygen therapy should be addressed rapidly?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
When a patient is undergoing a course of hyperbaric oxygen therapy, which of the following drugs is most likely to increase the risk of oxygen toxicity?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Hyperbaric Complications - References

References

Uittenbogaard D,Lansdorp CA,Bauland CG,Boonstra O, Hyperbaric oxygen therapy for dermal ischemia after dermal filler injection with calcium hydroxylapatite: a case report. Undersea     [PubMed]
Koufakis T,Karras SN,Mustafa OG,Karangelis D,Zebekakis P,Kotsa K, Into the deep blue sea: A review of the safety of recreational diving in people with diabetes mellitus. European journal of sport science. 2019 Apr 23;     [PubMed]
Gao Y,Yang J,Ma L,Zhang Y,Li Z,Wu L,Yang L,Wang H, Non-ST elevation myocardial infarction induced by carbon monoxide poisoning: A case report. Medicine. 2019 Apr;     [PubMed]
Sadler C,Latham E,Hollidge M,Boni B,Brett K, Delayed hyperbaric oxygen therapy for severe arterial gas embolism following scuba diving: a case report. Undersea     [PubMed]
Siaffa R,Luciani M,Grandjean B,Coulange M, Massive portal venous gas embolism after scuba diving. Diving and hyperbaric medicine. 2019 Mar 31;     [PubMed]
Salama SE,Eldeeb AE,Elbarbary AH,Abdelghany SE, Adjuvant Hyperbaric Oxygen Therapy Enhances Healing of Nonischemic Diabetic Foot Ulcers Compared With Standard Wound Care Alone. The international journal of lower extremity wounds. 2019 Mar;     [PubMed]
Vinkel J,Lohse N,Hyldegaard O, The clinical use of hyperbaric oxygen in the treatment of Danish patients with diabetic foot ulcers. Danish medical journal. 2019 Feb;     [PubMed]
Chen W,Liang X,Nong Z,Li Y,Pan X,Chen C,Huang L, The Multiple Applications and Possible Mechanisms of the Hyperbaric Oxygenation Therapy. Medicinal chemistry (Shariqah (United Arab Emirates)). 2018 Dec 18;     [PubMed]
Liao SC,Mao YC,Yang KJ,Wang KC,Wu LY,Yang CC, Targeting optimal time for hyperbaric oxygen therapy following carbon monoxide poisoning for prevention of delayed neuropsychiatric sequelae: A retrospective study. Journal of the neurological sciences. 2019 Jan 15;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Certified Hyperbaric Technologist (CHT). The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Certified Hyperbaric Technologist (CHT), it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Certified Hyperbaric Technologist (CHT), you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Certified Hyperbaric Technologist (CHT). When it is time for the Certified Hyperbaric Technologist (CHT) board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Certified Hyperbaric Technologist (CHT).