Physiology, Cardiac Cycle


Article Author:
Joshua Pollock


Article Editor:
Amgad Makaryus


Editors In Chief:
William Gossman


Managing Editors:
Avais Raja
Orawan Chaigasame
Carrie Smith
Abdul Waheed
Khalid Alsayouri
Kyle Blair
Trevor Nezwek
Radia Jamil
Erin Hughes
Patrick Le
Anoosh Zafar Gondal
Saad Nazir
William Gossman
Hassam Zulfiqar
Navid Mahabadi
Hussain Sajjad
Steve Bhimji
Muhammad Hashmi
John Shell
Matthew Varacallo
Heba Mahdy
Ahmad Malik
Abbey Smiley
Sarosh Vaqar
Mark Pellegrini
James Hughes
Beata Beatty
Daniyal Ameen
Altif Muneeb
Beenish Sohail
Nazia Sadiq
Hajira Basit
Phillip Hynes
Komal Shaheen
Sandeep Sekhon


Updated:
5/5/2019 12:25:34 PM

Introduction

The cardiac cycle is a series of pressure changes that take place within the heart. These pressure changes result in movement of blood through different chambers of the heart and the body as a whole. These pressure changes originate as conductive electrochemical changes within the myocardium that result in contraction of cardiac muscle concentrically. Valves within the heart direct blood movement which leads to an organized propulsion of blood to the next chamber. This rhythmic sequence causes changes in pressure and volume that are often seen graphically in the form of a Wiggers diagram or venous pressure tracings. An understanding of this information is vital to the clinical understanding of cardiac auscultation, pathology, and interventions.

Cellular

Cardiac excitation and contraction directly result in the changes in pressure and volume. The pressure and volume changes are directly related to Ca++ ions entering the myocytes perpetuating conduction. Due to this conduction originating at the sinoatrial (SA) node the atria contract together and then, after a short pause at the atrioventricular (AV) node, the two ventricles contract together. These contractions come after a slight “lag” with regard to the electrical conduction that makes them possible. This lag is due to a time gap between the electrical conduction and the actual application of the myocardial force. In other words, though the depolarization has gone through the myocardium (the ECG tracing), there is little or no contraction because the depolarization read as the electrical signal is the very beginning of the muscle’s movement. This is well-illustrated on a Wiggers diagram where the QRS complex on the ECG directly precedes ventricular systole (represented on the diagram by increased ventricular pressure).[1][2][3][4]

Function

Concerning the events of the cardiac cycle, it is important to compartmentalize their sequence. The contraction of the atria (both the right and left) physiologically precede that of the ventricles (both right and left). This sequence of contraction allows us to separate the right and left heart, at least functionally, as two separate circuits. Due to this functional similarity between the right and left side, this article will often only comment on the left ventricle, with it known that a similar sequence of events is taking place in the right heart as well.

Cardiac cycle events can be divided into diastole and systole. Diastole represents ventricular filling, and systole represents ventricular contraction/ejection. Systole and diastole occur in both the right and left heart, though with very different pressures (see hemodynamics below).

Diastole begins with the closing of the aortic valve (or pulmonic) and ends with the closing of the mitral valve (or tricuspid). This period encompasses the ventricular relaxation and filling. Diastole represents this time where the blood vessels return blood to the heart in preparation for the next ventricular contraction.

Systole begins when the mitral valve (or tricuspid) closes and concludes with the closure of the aortic valve (or pulmonic). This stage of the cardiac cycle represents ventricular contraction forcing blood into the arteries. When a ventricle contracts, the pressure within the ventricles will (barring pathology) become greater than adjacent blood vessels and blood will be directed out by the valves.[5][6]

Mechanism

Hemodynamics

A detailed look at the ventricular filling and contraction can be visualized on a pressure-volume curve with the pressure on the Y-axis and the volume on the X-axis.  Frequently, this only represents the left ventricle, but again, an analogous process is occurring in the right ventricle, albeit at much lower pressures.

The ventricular function can be divided into four phases: isovolumic relaxation, ventricular filling, isovolumic contraction, and rapid ventricular ejection. Isovolumic relaxation is the period immediately after ventricular contraction when the aortic valve has closed, but the mitral valve has not yet opened. This period represents a time of very low pressure in the ventricle which helps create the gradient which opens the mitral valve. The mitral valve opens, signifying the beginning of ventricular filling where the high pressure from the blood vessels forces blood into the expanding ventricle. After the ventricle fills and transitions to contracting, the pressure eventually exceeds that of the blood vessels. This gradient closes the mitral valve which marks the beginning of systole and causes the first heart sound (in concert with the tricuspid valve) denoted as S1. The time between this closing of the mitral valve and the opening of the aortic valve is the period of isovolumic contraction. This is where pressure builds, yet the blood does not leave the ventricle. Eventually, the pressure within the ventricle exceeds the pressure in the arteries, and the aortic valve opens, marking the beginning of rapid ventricular ejection. A healthy ventricle will eject more than 60% of its volume, and after the aortic valve closes, the cycle begins again. The aortic valve closure is the source of the second heart sound (in concert with the pulmonic valve) denoted as S2. 

The energy propelling the blood into the ventricle during diastole is derived from the potential energy from the elasticity of the blood vessels. During systole, the blood vessels are distended by the heart forcing blood from the ventricles into the systemic (or pulmonic) system. This energy is stored in the blood vessel walls like an elastic tube. The blood vessels now contain blood under higher pressure than the ventricles due to a combination of that elasticity and ventricular relaxation.

Heart Chamber (Max/Min Pressure in mmHg)

  • Left Ventricle (120/15)
  • Right Ventricle (25/5)
  • Right Atria (Mean 4 to 5)
  • Pulmonary Arteries/Left Atria (25/10)
  • Aorta (120/80)

Pathophysiology

One of the most clinically relevant examples of altering the normal cardiac cycle is heart failure. Heart failure represents a decreased functioning of the ventricles. This pathology can be classified as right ventricular, left ventricular, or both, as well as, diastolic or systolic.  Systolic heart failure represents a dilation of the left ventricle and a decreased ability to contract during the ventricular contraction phase of the cycle. Diastolic heart failure represents sufficient contraction, but poor distention of the myocardium. This lack lusitropy (the rate of relaxation) is often a result of a thickened myocardium. Regardless of the cause, the symptoms of heart failure depend on the compartment preceding the area of backup. For example, left heart failure can result in pulmonary symptoms such as shortness of breath or abnormal lung sounds. Alternatively, right heart failure results in systemic symptoms such as pedal edema. While structural abnormalities in the myocardium typically characterize congestive heart failure, some of these symptoms may be present in any pathology that alters flow between cardiac chambers and subsequent cardiac output. Myocardial infarction, arrhythmias, or vascular disease can all compromise the normal function of the cardiac cycle albeit with slightly different clinical pictures.[7]

Similarly, valve defects can affect blood flow between cardiac compartments. Incompetent valves fail to direct the flow in the proper direction, and stiff/stenotic valves fail to allow proper blood flow to the next chamber. When the valve defects are severe enough, a clinical picture emerges resembling our discussion of heart failure. As in heart failure, incompetent valves decrease forward flow and can result in a backup of blood. Another series of conditions which compromise normal blood flow within the heart, and by extension corrupt the normal cardiac cycle, are developmental anomalies. Of note, ventricular septal defects (VSDs) cause flow through the normally impermeable ventricular septum as a result of the incomplete closure. This typically results in blood moving from the left ventricle to the right ventricle and slightly decreased forward flow. If allowed to persist, the shunt can reverse due to right ventricular remodeling (Eisenmenger syndrome) causing reduced blood flow to the lungs.

Clinical Significance

Physical Exam and Auscultation

Cardiac auscultation is performed in virtually every form of doctor-patient interaction. The physician listens to the heart sounds, rate, and rhythm. If murmurs are detected during this examination, it can be determined if the murmur takes place in systole (between S1 and S2) or diastole (after S2 and before the next S1). Determining the timing of murmurs can help narrow down an otherwise broad differential. For example, a murmur determined to be systolic rules out diastolic murmur causes such as mitral stenosis and aortic regurgitation. As a general rule, systolic murmurs involve blood leaving the ventricle (e.g., mitral regurgitation, aortic stenosis, HOCM) and diastolic murmurs involve blood entering the ventricles (mitral stenosis, aortic regurgitation).

The symptomatology of various cardiac pathology may be evident on physical examination by methods other than auscultation. Palpation and simple observation can reveal alterations to the normal pressure-contraction cycling of heart. Palpation of the distal extremities for temperature and the presence of edema is a rapid bedside maneuver. One can also inspect the neck for jugular venous distention. Because the jugular veins are continuous with the right atria, their distention can be used as a rough estimation of the right atrial pressure. An elevated right atrial pressure can correlate to pathologies such as arrhythmia or poor cardiac output. One striking example occurs in congestive heart failure, where poor forward flow causes a backup into preceding cardiac chambers.

Cardiac Imaging

An understanding of the cardiac cycle is vital to the interpretation of cardiac imaging. In particular, one of the most direct methods for cardiac imaging is the echocardiogram. This ultrasound-based technology allows representative visualization of cardiac wall motion, valve function, and blood flow. Using this type of imaging, and by comparing the results to the normal physiological principals stated above, one can identify pathologies such as heart failure, pericardial effusion, or aberrant valves. These pathologies will demonstrate altered blood flow and chamber pressures and are discussed below.


  • Image 5761 Not availableImage 5761 Not available
    Contributed by Joshua D Pollock
Attributed To: Contributed by Joshua D Pollock

Interested in Participating?

We are looking for contributors to author, edit, and peer review our vast library of review articles and multiple choice questions. In as little as 2-3 hours you can make a significant contribution to your specialty. In return for a small amount of your time, you will receive free access to all content and you will be published as an author or editor in eBooks, apps, online CME/CE activities, and an online Learning Management System for students, teachers, and program directors that allows access to review materials in over 500 specialties.

Improve Content - Become an Author or Editor

This is an academic project designed to provide inexpensive peer-reviewed Apps, eBooks, and very soon an online CME/CE system to help students identify weaknesses and improve knowledge. We would like you to consider being an author or editor. Please click here to learn more. Thank you for you for your interest, the StatPearls Publishing Editorial Team.

Physiology, Cardiac Cycle - Questions

Take a quiz of the questions on this article.

Take Quiz
Sinoatrial or pacemaker activity of the heart may be depressed by which of the following?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
When the mitral valve and the aortic valve are both closed, what are the two possible states of the left ventricle?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 78-year-old patient with a history of amyloidosis comes to the clinic for medication refill and follow-up. He has been working closely with a cardiologist as his condition is beginning to affect his cardiac function. He reports to feeling short of breath at times, particularly when walking his dog or climbing stairs. His last echocardiogram showed preserved ejection fraction. What phase of ventricular function is most affected by this patient’s condition?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 30-year-old male is in the clinic for cardiovascular examination as part of a normal checkup. He admits to a 10-year history of intravenous drug use and occasional cigarette smoking. On cardiac auscultation, there is a rushing noise immediately before the first heart sound. How should this murmur be characterized?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up
A 67-year-old male comes into the primary care office for a yearly check-up. He has a history of left heart failure that has been well controlled until recently. Today he is experiencing shortness of breath and 2+/4+ swelling in his bilateral lower extremities that is pitting. With the patient sitting on the table his jugular venous impulse is visible to the level of the mandible. With respect to the right ventricle, what is the primary phenomenon responsible for cardiac preload?



Click Your Answer Below


Would you like to access teaching points and more information on this topic?

Improve Content - Become an Author or Editor and get free access to the entire database, free eBooks, as well as free CME/CE as it becomes available. If interested, please click on "Sign Up" to register.

Purchase- Want immediate access to questions, answers, and teaching points? They can be purchased above at Apps and eBooks.


Sign Up

Physiology, Cardiac Cycle - References

References

Nishimura RA,Borlaug BA, Diastology for the clinician. Journal of cardiology. 2019 Jun;     [PubMed]
DeMers D,Wachs D, Physiology, Mean Arterial Pressure 2019 Jan;     [PubMed]
Chung CS, How myofilament strain and strain rate lead the dance of the cardiac cycle. Archives of biochemistry and biophysics. 2019 Mar 30;     [PubMed]
Castillo Moya A,Del Pozo Bascuñán P, [Cardiopulmonary Interactions: From Physiology to Clinic]. Revista chilena de pediatria. 2018 Oct;     [PubMed]
Koschate J,Drescher U,Werner A,Thieschäfer L,Hoffmann U, Cardiovascular regulation - associations between exercise and head up tilt. Canadian journal of physiology and pharmacology. 2019 Mar 27;     [PubMed]
Kim IC,Hong GR, Intraventricular Flow: More than Pretty Pictures. Heart failure clinics. 2019 Apr;     [PubMed]
van der Pol A,van Gilst WH,Voors AA,van der Meer P, Treating oxidative stress in heart failure: past, present and future. European journal of heart failure. 2019 Apr;     [PubMed]

Disclaimer

The intent of StatPearls is to provide practice questions and explanations to assist you in identifying and resolving knowledge deficits. These questions and explanations are not intended to be a source of the knowledge base of all of medicine, nor is it intended to be a board or certification review of Adult Ambulatory-Medical Student. The authors or editors do not warrant the information is complete or accurate. The reader is encouraged to verify each answer and explanation in several references. All drug indications and dosages should be verified before administration.

StatPearls offers the most comprehensive database of free multiple-choice questions with explanations and short review chapters ever developed. This system helps physicians, medical students, dentists, nurses, pharmacists, and allied health professionals identify education deficits and learn new concepts. StatPearls is not a board or certification review system for Adult Ambulatory-Medical Student, it is a learning system that you can use to help improve your knowledge base of medicine for life-long learning. StatPearls will help you identify your weaknesses so that when you are ready to study for a board or certification exam in Adult Ambulatory-Medical Student, you will already be prepared.

Our content is updated continuously through a multi-step peer review process that will help you be prepared and review for a thorough knowledge of Adult Ambulatory-Medical Student. When it is time for the Adult Ambulatory-Medical Student board and certification exam, you will already be ready. Besides online study quizzes, we also publish our peer-reviewed content in eBooks and mobile Apps. We also offer inexpensive CME/CE, so our content can be used to attain education credits while you study Adult Ambulatory-Medical Student.